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Abstract

This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of
communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study.
Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background
information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using
state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the
motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the
technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures.
We document the participant privacy procedures and their underlying principles. The paper is concluded with early results
from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.

Citation: Stopczynski A, Sekara V, Sapiezynski P, Cuttone A, Madsen MM, et al. (2014) Measuring Large-Scale Social Networks with High Resolution. PLoS ONE 9(4):
e95978. doi:10.1371/journal.pone.0095978

Editor: Yamir Moreno, University of Zaragoza, Spain

Received February 15, 2014; Accepted April 2, 2014; Published April 25, 2014

Copyright: � 2014 Stopczynski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The SensibleDTU project was made possible by a Young Investigator Grant from the Villum Foundation (High Resolution Networks, awarded to SL).
Scaling the project up to 1 000 individuals in 2013 was made possible by a interdisciplinary UCPH 2016 grant, Social Fabric (PI David Dreyer Lassen, SL is co-PI)
focusing mainly on the social and basic science elements of the project. This grant has funded purchase of the smartphones, as well as technical personnel. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: arks@dtu.dk

Introduction

Driven by the ubiquitous availability of data and inexpensive

data storage capabilities, the concept of big data has permeated

the public discourse and led to surprising insights across the

sciences and humanities [1,2]. While collecting data may be

relatively easy, it is a challenge to combine datasets from multiple

sources. This is in part due to mundane practical issues, such as

matching up noisy and incomplete data, and in part due to

complex legal and moral issues connected to data ownership and

privacy, since many datasets contain sensitive data regarding

individuals [3]. As a consequence, most large datasets are

currently locked in ‘silos’, owned by governments or private

companies, and in this sense the big data we use today are

‘shallow’—only a single or very few channels are typically

examined.

Such shallow data limit the results we can hope to generate from

analyzing these large datasets. We argue below (in Motivations

Section) that in terms of understanding of human social networks,

such shallow big data sets are not sufficient to push the boundaries

in certain areas. The reason is that human social interactions take

place across various communication channels; we seamlessly and

routinely connect to the same individuals using face-to-face

communication, phone calls, text messages, social networks (such

as Facebook and Twitter), emails, and many other platforms. Our

hypothesis is that, in order to understand social networks, we must

study communication across these many channels that are

currently siloed. Existing big data approaches have typically

concentrated on large populations (O(105){O(108)), but with a

relatively low number of bits per participant, for example in call

detail records (CDR) studies [4] or Twitter analysis [5]. Here, we

are interested in capturing deeper data, looking at multiple

channels from sizable populations. Using big data collection and

analysis techniques that can scale in number of participants, we

show how to start deep, i.e. with detailed information about every

single study participant, and then scale up to very large

populations.

We are not only interested in collecting deep data from a large,

highly connected population, but we also aim to create a dataset

that is collected interactively, allowing us to change the collection

process. This enables us to rapidly adapt and change our collection

methods if current data, for example, have insufficient temporal

resolution with regard to a specific question we would like to

answer. We have designed our data collection setup in such a way

that we are able to deploy experiments. We have done this because

we know that causal inference is notoriously complicated in

network settings [6]. Moreover, our design allows us to perform

continuous quality control of the data collected. The mindset of

real-time data access can be extended beyond pure research,

monitoring data quality and performing interventions. Using the

methods described here, we can potentially use big data in real

time to observe and react to the processes taking place across

entire societies. In order to achieve this goal, researchers must

approach the data in the same way large Internet services do—as a
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resource that can be manipulated and made available in real time

as this kind of data inevitably loses value over time.

In order to realize the interactive data collection, we need to

build long-lasting testbeds to rapidly deploy experiments, while still

retaining access to all the data collected hitherto. Human beings

are not static; our behavior, our networks, our thinking change

over time [7,8]. To be able to analyze and understand changes

over long time scales, we need longitudinal data, available not just

to a single group of researchers, but to changing teams of

researchers who work with an evolving set of ideas, hypotheses,

and perspectives. Ultimately, we aim to be able to access the data

containing the entire life-experience of people and look at their

lives as dynamic processes. Eventually, we aim to even go beyond

the lifespan of individuals and analyze the data of the entire

generations. We are not there yet, but we are moving in this

direction. For example, today, all tweets are archived in the

Library of Congress (https://blog.twitter.com/2010/tweet-

preservation), a person born today in a developed country has a

good chance of keeping every single picture they ever take, the

next generation will have a good chance of keeping highly detailed

life-log, including, for example, every single electronic message

they have ever exchanged with their friends. The status quo is that

we need to actively opt out if we want to prevent our experiences

from being auto-shared: major cloud storage providers offer auto-

upload feature for pictures taken with a smartphone, every song

we listen to on Spotify is remembered and used to build our

profile—unless we actively turn on private mode.

In this paper, we describe a large-scale study that observes the

lives of students through multiple channels—the Copenhagen

Network Study. With its iterative approach to deployments, this

study provides an example of an interdisciplinary approach. We

collect data from multiple sources, including questionnaires, online

social networks, and smartphones handed out to the students.

Data from all of these channels are used to create a multi-layered

view of the individuals, their networks, and their environments.

These views can then be examined separately, and jointly, by

researchers from different fields. We are building the Copenhagen

Networks Study as a framework for long-lived extensible studies.

The 2012 and 2013 deployments described here are called

SensibleDTU and are based at the Technical University of

Denmark. They have been designed as part of the Social Fabric

project (see Acknowledgements for details) in close collaboration

with researchers from the social sciences, natural sciences,

medicine (public health), and the humanities. We are currently

in the second iteration where we have deployed phones to about 1

000 participants, enabling us to compile a dataset of unprece-

dented size and resolution. In addition to the core task of collecting

deep behavioral data, we also experiment with creating rich

services for our participants and improving privacy practices.

Human lives, especially when seen over a period of months and

years, take place in multiple dimensions. Capturing only a single

channel, even for the entire life of an individual, limits the

knowledge that can be applied to understand a human being. True

interdisciplinary studies require deep data. Anthropologists,

economists, philosophers, physicists, psychologists, public health

researchers, sociologists, and computational social science re-

searchers are all interested in distinct questions, and traditionally

use very different methods. We believe that it is when these groups

start working together, qualitatively better findings can be made.

Here we give a brief overview of the related work, in the

domains of data collection and analysis, extend the description of

the motivation driving the project, and outline the experimental

plan and data collection methodology. We report on privacy and

informed consent practices that are used in the study, emphasizing

how we went beyond the usual practice in such studies and created

some cutting edge solutions in the domain. We also report a few

initial results from the project, primarily in the form of an overview

of collected data, and outline future directions. We hope the work

presented here will serve as a guideline for deploying similar

massive sensor-driven human-data collection studies. With the

overview of the collected data, we extend an invitation to

researches of all fields to contact the authors for the purpose of

defining novel projects around the Copenhagen Networks Study

testbed.

Related Work

Lazer et al. introduced computational social science (CSS) as a

new field of research that studies individuals and groups in order to

understand populations, organizations, and societies using big

data, i.e. phone call records, GPS traces, credit card transactions,

webpage visits, emails, and data from social networks [9]. CSS

focuses on questions that can now be studied using data-driven

computational analyses of datasets such as the ones mentioned

above, and which could only previously be addressed as self-

reported data or direct observations, for example dynamics in

work groups, face-to-face interactions, human mobility, or

information spreading. The hope is that such a data-driven

approach will bring new types of insight that are not available

using traditional methods. The challenges that emerge in this set of

new approaches include wrangling big data, applying network

analysis to dynamic networks, ensuring privacy of personal

information, and enabling interdisciplinary work between com-

puter science and social science, to name just a few.

In this section we describe related work in terms of the central

methods of data collection. Furthermore, we provide a brief

overview of results obtained from the analysis of CSS data, and

finally, mention some principles regarding privacy and data

treatment.

Data collection
Many of the CSS studies carried out to date have been

performed on call detail records (CDRs), which are records of

phone calls and messages collected by mobile phone operators.

Although CDRs can be a proxy for mobility and social interaction

[10], much of the social interaction happens face-to-face, and may

therefore be difficult to capture with CDRs or other channels such

as social networks (Twitter, Facebook, etc.) [11]. To gain a fuller

view of participants’ behavior, some CSS studies have developed

an approach of employing Radio Frequency Identification (RFID)

devices [12], sociometetric badges [13,14], as well as smartphones

for the data collection [15–18]. Smartphones are unobtrusive,

relatively cheap, feature a plethora of embedded sensors, and tend

to travel nearly everywhere with their users. They allow for

automatic collection of sensor data including GPS, WiFi, Blue-

tooth, calls, SMS, battery, and application usage [19]. However,

collecting data with smartphones presents several limitations as

sensing is mainly limited to pre-installed sensors, which may not be

of highest quality. Furthermore, off-the-shelf software and

hardware may not be sufficiently robust for longitudinal studies.

A large number of solutions for sensor-driven human data

collection have been developed, ranging from dedicated software

to complete platforms, notably ContextPhone [20], SocioXensor

[21], MyExperience [22], Anonysense [23], CenceMe [24],

Cityware [25], Darwin phones [26], Vita [27], and ContextTool-

box [28].

Running longitudinal rich behavioral data collection from large

populations presents multiple logistical challenges and only few
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studies have attempted to do this so far. In the Reality Mining

study, data from 100 mobile phones were collected over a nine-

month period [29]. In the Social fMRI study, 130 participants

carried smartphones running the Funf mobile software [30] for 15

months [31]. Data was also collected from Facebook, credit card

transactions, and surveys were pushed to the participants’ phones.

The Lausanne Data Collection Campaign [32,33] featured 170

volunteers in the Lausanne area of Switzerland, between October

2009 and March 2011. In the SensibleOrganization study [34],

researchers used RFID tags for a period of one month to collect

face-to-face interactions of 22 employees working in a real

organization. Preliminary results from the OtaSizzle study

covering 20 participants from a large university campus have

been reported [35]. Finally, in the Locaccino study [36], location

within a metropolitan region was recorded for 489 participants for

varying periods, ranging from seven days to several months.

Data analysis
In the following, we provide selected examples of results

obtained from analysis of CSS datasets in various domains.

Human Mobility. Gonzales et al. analyzed six months of

CDRs of 100 000 users. Their results revealed that human

mobility is quite predictable, with high spatial and temporal

regularity, and few highly frequented locations [37]. Their findings

were further explored by Song et al., who analyzed three months

of CDRs from 50 000 individuals and found a 93% upper bound

of predictability of human mobility. This figure applies to most

users regardless of different travel patterns and demographics [38].

Sevtsuk et al. focused instead on the aggregate usage of 398 cell

towers, describing the hourly, daily, and weekly patterns and their

relation to demographics and city structure [39]. Bagrow et al.

analyzed 34 weeks of CDRs for 90 000 users, identifying habitats

(groups of related places) and found that the majority of

individuals in their dataset had between 5 and 20 habitats [40].

De Domenico et al. showed in [41] how location prediction can be

performed using multivariate non-linear time series prediction,

and how accuracy can be improved considering the geo-spatial

movement of other users with correlated mobility patterns.

Social Interactions. Face-to-face interactions can be used to

model social ties over time and organizational rhythms in response

to events [29,42,43]. Comparing these interactions with Facebook

networks, Cranshaw et al. found that meetings in locations of high

entropy (featuring a diverse set of visitors) are less indicative than

meetings in locations visited by a small set of users [36]. Clauset et

al. found that a natural time scale of face-to-face social networks is

4 hours [44].

Onnela et al. analyzed CDRs from 3.9 million users [45] and

found evidence supporting the weak ties hypothesis [46].

Lambiotte et al. analyzed CDRs from 2 million users and found

that the probability of the existence of the links decreases as d{2,

where d is the distance between users [47]. In another study with

CDRs from 3.4 million users, the probability was found to

decrease as d{1:5 [48]. Analyzing CDRs for 2 million users,

Hidalgo et al. found that persistent links tend to be reciprocal and

associated with low degree nodes [49].

Miritello et al. analyzed CDRs for 20 million people and

observed that individuals have a finite limit of number of active

ties, and two different strategies for social communication [50,51].

Sun et al. analyzed 20 million bus trips made by about 55% of the

Singapore population and found distinct temporal patterns of

regular encounters between strangers, resulting in a co-presence

network across the entire metropolitan area [52].

Health and Public Safety. Using CDRs from the period of

the 2008 earthquake in Rwanda, Kapoor et al. created a model for

detection of the earthquake, the estimation of the epicenter, and

determination of regions requiring relief efforts [53]. Aharony et

al. performed and evaluated a fitness activity intervention with

different reward schemes, based on face-to-face interactions [31],

while Madan et al. studied how different illnesses (common cold,

depression, anxiety) manifest themselves in common mobile-

sensed features (WiFi, location, Bluetooth) and the effect of social

exposure on obesity [54]. Salathé et al. showed that disease models

simulated on top of proximity data obtained from a high school

are in good agreement with the level of absenteeism during an

influenza season [55], and emphasize that contact data is required

to design effective immunization strategies.

Influence and Information Spread. Chronis et al. [16] and

Madan et al. [56] investigated how face-to-face interactions affect

political opinions. Wang et al. reported on the spread of viruses in

mobile networks; Bluetooth viruses can have a very slow growth

but can spread over time to a large portion of the network, while

MMS viruses can have an explosive growth but their spread is

limited to sub-networks [57]. Aharony et al. analyzed the usage of

mobile apps in relation to face-to-face interactions and found that

more face-to-face interaction increases the number of common

applications [31]. Using RFID for sensing face-to-face interac-

tions, Isella et al. estimated the most probable vehicles for infection

propagation [58]. Using a similar technique, however applied to

232 children and 10 teachers in a primary school, Stehle et al.

described a strong age homophily in the interactions between

children [59].

Bagrow et al. showed how CDR communications, in relation to

entertainment events (e.g. concerts, sporting events) and emer-

gencies (e.g. fires, storms, earthquakes), have two well-distinguish-

able patterns in human movement [60]. Karsai et al. analyzed

CDR from six millions users and found that strong ties tend to

constrain the information spread within localized groups of

individuals [61].

Studies of Christakis and Fowler on the spread of obesity and

smoking in networks [62,63] prompted a lively debate on how

homophily and influence are confounded. Lyons was critical

toward the statistical methods used [64]. Stelich et al. discussed

how friendship formation in a dynamic network based on

homophily can be mistaken for influence [65], and Shalizi and

Thomas showed examples of how homophily and influence can be

confounded [6]. Finally, Aral et al. provided a generalized

statistical framework for distinguishing peer-to-peer influence

from homophily in dynamic networks [66].

Socioeconomics and Organizational Behavior. For em-

ployees in a real work environment, face-to-face contact and email

communication can be used to predict job satisfaction and group

work quality [34]. Having more diverse social connections is

correlated with economic opportunities, as found in the study

containing CDRs of over 65 million users [67]. A similar result

was reported in a study of economic status and physical proximity,

where a direct correlation between more social interaction

diversity and better financial status was found [31]. Or, as shown

in a study of Belgian users, language regions in a country can be

identified based solely on CDRs [68].

Privacy
Data collected about human participants is sensitive and

ensuring privacy of the participants is a fundamental require-

ment—even when participants may have limited understanding of

the implications of data sharing [69,70]. A significant amount of

literature exists regarding the possible attacks that can be

performed on personal data, such as unauthorized analysis [71]

with a view to decoding daily routines [72] or friendships [42] of
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the participants. In side channel information attacks, data from public

datasets (e.g. online social networks) are used to re-identify users

[73–75]. Even connecting the different records of one user within

the same system can compromise privacy [73]. Specific attacks are

also possible in network data, as nodes can be identified based on

the network structure and attributes of the neighbors [76,77].

Various de-identification techniques can be applied to the data.

Personally Identifiable Information (PII) is any information that can be

used to identify an individual, such as name, address, social

security number, date and place of birth, employment, education,

or financial status. In order to avoid re-identification and

consequent malicious usage of data, PII can be completely

removed, hidden by aggregation, or transformed to be less

identifiable, resulting in a trade-off between privacy and utility

[78]. Substituting PII with the correspondent one-way hash allows

removal of plaintext information and breaks the link to other

datasets. This method, however, does not guarantee protection

from re-identification [79–82]. K{anonymity is a technique of

ensuring that it is not possible to distinguish any user from at least

k{1 other in the dataset [83]; studies have shown that this

method often may be too weak [72]. L{diversity [84] and

t{closeness [85] have been proposed as extensions of

k{anonymity with stronger guarantees.

Another approach to introducing privacy is based on perturbing

the data by introducing noise, with the goal of producing privacy-

preserving statistics [86–90]. Homomorphic encryption, on the other

hand, can be used to perform computation directly on the

encrypted data, thus eliminating the need of exposing any sensitive

information [91–94]; this technique has been applied, for example,

to vehicle positioning data [95] and medical records [96].

The flows of data—creation, copying, sharing—can be restrict-

ed. Information Flow Control solutions such as [97–99] attempt to

regulate the flow of information in digital systems. Auditing

implementations such as [100–102] track the data flow by

generating usage logs. Data Expiration makes data inaccessible after

a specific time, for example by self-destruction or by invalidating

encryption keys [103–106]. Watermarking identifies records using

hidden fingerprints, to allow traceability and identification of leaks

[107–109].

Motivation

Here we describe our primary motivation for deploying the

Copenhagen Networks Study, featuring deep and high-resolution

data and a longitudinal approach.

Multiplexity
The majority of big data studies use datasets containing data

from a single source, such as call detail records (CDRs) [4], RFID

sensors [110], Bluetooth scanners [111], or online social networks

activity [2]. Although, as we presented in the Related Work

section, analyzing these datasets has led to some exciting findings,

we may however not understand how much bias is introduced in

such single-channel approaches, particularly in the case of highly

interconnected data such as social networks.

We recognize two primary concerns related to the single-source

approach: incomplete data and limitation with respect to an

interdisciplinary approach. For social networks, we intuitively

understand that people communicate on multiple channels: they

call each other on the phone, meet face-to-face, or correspond

through email. Observing only one channel may introduce bias

that is difficult to estimate [11]. Ranjan et al. investigated in [112]

how CDR datasets, containing samples dependent upon user

activity and requiring user participation, may bias our under-

standing of human mobility. The authors used data activities as

the ground truth; due to applications running in the background,

sending and requesting data, smartphones exchange data with the

network much more often than typical users make calls and

without the need for their participation. Comparing the number of

locations and significant locations [113], they found that the CDRs

reveal only a small fraction of users’ mobility, when compared with

data activity. The identified home and work locations, which are

considered the most important locations, did not, however, differ

significantly when estimated using either of the three channels

(voice, SMS, and data).

Domains of science operate primarily on different types of data.

Across the sciences, researchers are interested in distinct questions

and use very different methods. Similarly, as datasets are obtained

from different populations and in different situations, it is difficult

to cross-validate or combine findings. Moreover, the single-

channel origin of the data can be a preventive factor in applying

expertise from multiple domains. If we collect data from multiple

channels in the same studies, on the same population, we can work

together across field boundaries and draw on the different

expertise and results generated by the studies and thereby achieve

more robust insights.

Social networks are ‘multiplex’ in the sense that many different

types of links may connect any pair of nodes. While recent work

[114,115] has begun to explore the topic, a coherent theory

describing multiplex, weighted, and directed networks remains

beyond the frontier of our current understanding.

Sampling
In many big data studies, data sampling is uneven. CDRs, for

example, only provide data when users actively engage, by making

or receiving a phone call or SMS. Users can also have different

patterns of engagement with social networks, some checking and

interacting several times a day, while others only do so once a

week [116]. Further, CDRs are typically provided by a single

provider who has a finite market share. If the market share is 20%
of the population and you consider only links internal to your

dataset, this translates to only 4% of the total number of links,

assuming random network and random sampling [4]. Thus, while

CDRs might be sufficient when analysing of mobility, it is not clear

that CDRs are a useful basis for social network analysis. Such

uneven, sparse sampling decreases the resolution of data available

for analysis. Ensuring the highest possible quality of the data, and

even sampling, is possible with primarily passive data gathering,

focusing on digital traces left by participants as they go through

their lives, for example by using phones to automatically measure

Bluetooth proximity, record location, and visible WiFi networks

[9,29,31]. In cases where we cannot observe participants passively

or when something simply goes wrong with the data collection, we

aim to use the redundancy in the channels: if the participant turns

off Bluetooth for a period, we can still estimate the proximity of

participants using WiFi scans (as described in the Results section).

Uneven sampling not only reduces the quality of available data,

but also—maybe more importantly—may lead to selection bias

when choosing participants to include in the analysis. As

investigated in [112], when only high-frequency voice-callers are

chosen from a CDR dataset for the purpose of analysis, this can

incur biases in Shannon entropy values (measure of uncertainty) of

mobility, causing overestimation of the randomness of partici-

pants’ behavior. Similarly, as shown in [116], choosing users with

a large network and many interactions on Facebook may lead to

overestimation of diversity in the ego-networks. Every time we

have to discard a significant number of participants, we risk

introducing bias in the data. Highly uneven sampling that cannot

Measuring Large-Scale Social Networks with High Resolution

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e95978



be corrected with redundant data, compels the researcher to make

mostly arbitrary choices as part of the analysis, complicating

subsequent analysis, especially when no well-established ground

truth is available to understand the bias. Our goal here is to collect

evenly sampled high-quality data for all the participants, so we do

not have to discard anyone; an impossible goal, but one worth

pursuing.

Since we only record data from a finite number of participants,

our study population is also a subset, and every network we

analyze will be sampled in some way, see [117] for a review on

sampling. While the 2013 deployment produces a dataset that is

nearly complete in terms of communication between the

participants, it is clear that it is subject to other sampling-related

issues. For example, a relatively small network embedded in a

larger society has a large ‘surface’ of links pointing to the outside

world, creating a boundary specification problem [118].

Dynamics
The networks and behaviors we observe are not static; rather

they display dynamics on multiple time-scales. Long-term

dynamics may be lost in big data studies when the participants

are not followed for a sufficiently long period, and only a relatively

narrow slice of data is acquired. Short-term dynamics may be

missed when the sampling frequency is too low.

It is a well-established fact that social networks evolve over time

[8,119]. The time scale of the changes varies and depends on

many factors, for example the semester cycle in students’ life,

changing schools or work, or simply getting older. Without

following such dynamics, and if we focus on a single temporal slice,

we risk missing an important aspect of human nature. To capture

it, we need long-term studies, that follow participants for months

or even years.

Our behavior is not static, even when measured for very short

intervals. We have daily routines, meeting with different people in

the morning and hanging out with other people in the evening, see

Figure 1. Our workdays may see us going to places and interacting

with people differently than on weekends. It is easy to miss

dynamics like these when the quality of the data is insufficient,

either because it has not been sampled frequently enough or

because of poor resolution, requiring large time bins.

Because each node has a limited bandwidth, only a small

fraction of the network is actually ‘on’ at any given time, even if

the underlying social network is very dense. Thus, to get from

node A to node B, a piece of information may only travel on links

that are active at subsequent times. Some progress has been made

on the understanding of dynamic networks, for a recent review see

[120]. However, in order to understand the dynamics of our highly

dense, multiplex network, we need to expand and adapt the

current methodologies, for example by adapting the link-based

viewpoint to dynamical systems.

Feedback
In many studies, the data collection phase is separated from the

analysis. The data might have been collected during usual

operation, before the idea of the study had even been conceived

(e.g. CDRs, WiFi logs), or access to the data might have not been

granted before a single frozen and de-identified dataset was

produced.

One real strength of the research proposed here is that, in

addition to the richness of the collected data, we are able to run

controlled experiments, including surveys distributed via the

smartphone software. We can, for example, divide participants

into sub-populations and expose them to distinct stimuli,

addressing the topic of causality as well as confounding factors

both of which have proven problematic [64,121] for the current

state-of-the-art [122,123].

Moreover, we monitor the data quality not only on the most

basic level of a participant (number of data points) but also by

looking at the entire live dataset to understand if the quality of the

collected data is sufficient to answer our research questions. This

allows us to see and fix bugs in the data collection software, or

learn that certain behaviors of the participants may introduce bias

in the data: for example after discovering missing data, some

interviewed students reported turning their phones off for the night

to preserve battery. This allowed us to understand that, even if in

terms of the raw numbers, we may be missing some hours of data

per day for these specific participants, there was very little

information in that particular data anyway.

Building systems with real-time data processing and access

allows us to provide the participants with applications and services.

It is an important part of the study not only to collect and analyze

the data but also to learn how to create a feedback loop, directly

feeding back extracted knowledge on behavior and interactions to

the participants. We are interested in studying how personal data

can be used to provide feedback about individual behavior and

promote self-awareness and positive behavior change, which is an

active area of research in Personal Informatics [124]. Applications

for participants create value, which may be sufficient to allow us to

deploy studies without buying a large number of smartphones to

provide to participants. Our initial approach has included the

development and deployment of a mobile app that provides

feedback about personal mobility and social interactions based on

personal participant data [125]. Preliminary results from the

deployment of the app, participant surveys, and usage logs suggest

an interest in such applications, with a subset of participants

repeatedly using the mobile app for personal feedback [126]. It is

Figure 1. Dynamics of face-to-face interactions in the 2012 deployment. The participants meet in the morning, attend classes within four
different study lines, and interact across majors in the evening. Edges are colored according to the frequency of observation, ranging from low (blue)
to high (red). With 24 possible observations per hour, the color thresholds are respectively: blue (0v observations ƒ6), purple (6v observations
ƒ12), and red (v12 observations). Node size is linearly scaled according to degree.
doi:10.1371/journal.pone.0095978.g001
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clear that feedback can potentially influence the study results:

awareness of a certain behavior may cause participants to want to

change that behavior. We believe, however, that such feedback is

unavoidable in any study, and studying the effects of such feedback

(in order to account for it) is an active part of our research.

New Science
The ability to record the highly dynamic networks opens up a

new, microscopic level of observation for the study of diffusion on

the network. We are now able to study diffusion of behavior, such

as expressions of happiness, academic performance, alcohol and

other substance abuse, information, as well as real world infectious

disease (e.g. influenza). Some of these vectors may spread on some

types of links, but not others. For example, influenza depends on

physical proximity for its spread, while information may diffuse on

all types of links; with the deep data approach we can study

differences and similarities between various types of spreading and

the interplay between the various communication channels

[127,128].

A crucial step when studying the structure and dynamics of

networks is to identify communities (densely connected groups of

nodes) [129,130]. In social networks, communities roughly

correspond to social spheres. Recently, we pointed out that

communities in many real world networks display pervasive overlap,

where each and every node belongs to more than one group [131].

It is important to underscore that the question of whether or not

communities in networks exhibit pervasive overlap has great

practical importance. For example, the patterns of epidemic

spreading change, and the optimal corresponding societal

countermeasures are very different, depending on the details of

the network structure.

Although algorithms that detect disjoint communities have

operated successfully since the notion of graph partitioning was

introduced in the 1970s [132], we point out that most networks

investigated so far are highly incomplete in multiple senses.

Moreover, we can use a simple model to show that sampling could

cause pervasively overlapping communities to appear to be disjoint

[133]. The results reveal a fundamental problem related to

working with incomplete data: Without an accurate model of the

structural ordering of the full network, we cannot estimate the implications of

working with incomplete data. Needless to say, this fact is of particular

importance to studies carried out on (thin) slices of data, describing

only a single communication channel, or a fraction of nodes using

that channel. By creating a high-quality, high-resolution data set,

we are able to form accurate descriptions of the full data set

needed to inform a proper theory for incomplete data. A deeper

understanding of sampling is instrumental for unleashing the full

potential of data from the billions of mobile phones in use today.

Methods: Data Collection

The Copenhagen Networks Study aims to address the problem

of single-modality data by collecting information from a number of

sources that can be used to build networks, study social

phenomena, and provide context necessary to interpret the

findings. A series of questionnaires provides information on the

socioeconomic background, psychological traces, and well-being of

the participants; Facebook data enables us to learn about the

presence and activity of subjects in the biggest online social

networking platform [134]; finally, the smartphones carried by all

participants record their location, telecommunication patterns,

and face-to-face interactions. Sensor data is collected with fixed

intervals, regardless of the users’ activity, and thus the uneven

sampling issue, daunting especially CDR-based studies, is mainly

overcome. Finally, the study is performed on the largest and the

most dense population to date in this type of studies. The physical

density of the participants helps to address the problem of missing

data, but raises new questions regarding privacy, since missing

data about a person can, in many cases, be inferred from existing

data of other participants. For example, if we know that person A,

B, and C met at a certain location based on the data from person

A, we do not need social and location data from B and C to know

where and with whom they were spending time.

Below we describe the technical challenges and solutions in

multi-channel data collection in 2012 and 2013 deployments. Data

collection, anonymization, and storage were approved by the

Danish Data Protection Agency, and comply with both local and

EU regulations.

Data Sources
The data collected in the two studies were obtained from

questionnaires, Facebook, mobile sensing, an anthropological field

study, and the WiFi system on campus.

Questionnaires. In 2012 we deployed a survey containing

95 questions, covering socioeconomic factors, participants’ work-

ing habits, and the Big Five Inventory (BFI) measuring personality

traits [135]. The questions were presented as a Google Form and

participation in the survey was optional.

In 2013 we posed 310 questions to each participant. These

questions were prepared by a group of collaborating public health

researchers, psychologists, anthropologists, and economists from

the Social Fabric project (see Acknowledgements). The questions

in the 2013 deployment included BFI, Rosenberg Self Esteem

Scale [136], Narcissism NAR-Q [137], Satisfaction With Life

Scale [138], Rotters Locus of Control Scale [139], UCLA

Loneliness scale [140], Self-efficacy [141], Cohens perceived stress

scale [142], Major Depression Inventory [143], The Copenhagen

Social Relation Questionnaire [144], and Panas [145], as well as

number of general health- and behavior-related questions. The

questions were presented using a custom-built web application,

which allowed for full customization and complete control over

privacy and handling of the respondents’ data. The questionnaire

application is capable of presenting different types of questions,

with branching depending on the answers given by the participant,

and saving each participant’s progress. The application is available

as an open source project at github.com/MIT-Model-Open-Data-

and-Identity-System/SensibleDTUData-Apps-Questionaires. Par-

ticipation in the survey was required for taking part in the

experiment. In order to track and analyze temporal development,

the survey (in a slightly modified form) was repeated every

semester on all participating students.

Facebook Data. For all participants in both the 2012 and

2013 deployment, it was optional to authorize data collection from

Facebook, and a large majority opted in. In the 2012 deployment,

only the friendship graph was collected every 24 hours, until the

original tokens expired. In the 2013 deployment, data from

Facebook was collected as a snapshot, every 24 hours. The

accessed scopes were birthday, education, feed, friend lists, friend

requests, friends, groups, hometown, interests, likes, location,

political views, religion, statuses, and work. We used long-lived

Facebook access tokens, valid for 60 days, and when the tokens

expired, participants received notification on their phones,

prompting them to renew the authorizations. For the academic

study purposes, the Facebook data provided rich demographics

describing the participants, their structural (friendship graph) and

functional (interactions) networks, as well as location updates.

Sensor Data. For the data collection from mobile phones, we

used a modified version of the Funf framework [31] in both
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deployments. The data collection app was built using the

framework runs on Android smartphones, which were handed

out to participants (Samsung Galaxy Nexus in 2012 and LG Nexus

4 in 2013). All the bugfixes and the improvement of the framework

are public and available under the OpenSensing github organi-

zation at github.com/organizations/OpenSensing.

In the 2012 deployment, we manually kept track of which

phone was used by each student, and identified data using device

IMEI numbers, but this created problems when the phones were

returned and then handed out to other participants. Thus, in the

2013 deployment, the phones were registered in the system by the

students in an OAuth2 authorization flow initiated from the

phone; the data were identified by a token stored on the phone

and embedded in the data files. The sensed data were saved as

locally encrypted sqlite3 databases and then uploaded to the server

every 2 hours, provided the phone was connected to WiFi. Each

file contained 1 hour of participant data from all probes, saved as

a single table. When uploaded, the data was decrypted, extracted,

and included in the main study database.

Qualitative Data. An anthropological field study was

included in the 2013 deployment. An anthropologist from the

Social Fabric project was embedded within a randomly selected

group of approximately 60 students (August 2013–august 2014). A

field study consists of participant observation within the selected

group, collecting qualitative data while simultaneously engaging in

the group activities. The goal is to collect data on various

rationales underlying different group formations, while at the same

time experiencing bodily and emotionally what it was like to be

part of these formations [146]. The participant observation

included all the student activities and courses, including extracur-

ricular activities such as group work, parties, trips, and other social

leisure activities. All participants were informed and periodically

reminded about the role of the anthropologist.

In addition to its central purpose, the anthropological data adds

to the multitude of different data channels, deepening the total

pool of data. This proved useful for running and optimizing the

project in a number of ways.

Firstly, data from qualitative social analysis are useful—in a very

practical sense—in terms of acquiring feedback from the

participants. One of the goals of the project is to provide value

to the participants; in addition to providing quantified-self style

access to data, we have also created a number of public services: a

homepage, a Facebook page, and a blog, where news and

information about the project can be posted and commented on.

These services are intended to keep the students interested, as well

as to make participants aware of the types and amounts of data

collected (see Privacy section). Because of the anthropologist’s real-

world engagement with the students, the qualitative feedback

contains complex information about participants’ interests and

opinions, including what annoyed, humored, or bored them. This

input has been used to improve existing services, such as

visualizations (content and visual expression), and to develop ideas

for the future services. In summary, qualitative insights helped us

understand the participants better and, in turn, to maintain and

increase participation.

Secondly, the inclusion of qualitative data increases the

potential for interdisciplinary work between the fields of computer

science and social science. Our central goal is to capture the full

richness of social interactions by increasing the number of

recorded communication channels. Adding a qualitative social

network approach makes it possible to relate the qualitative

observations to the quantitative data obtained from the mobile

sensing, creating an interdisciplinary space for methods and

theory. We are particularly interested in the relationship between

the observations made by the embedded anthropologist and the

data recorded using questionnaires and mobile sensing, to answer

questions about the elements difficult to capture using our high-

resolution approach. Similarly, from the perspective of social

sciences, we are able to consider what may be captured by

incorporating quantitative data from mobile sensing into a

qualitative data pool—and what can we learn about social

networks using modern sensing technology.

Finally, these qualitative data can be used to ground the

mathematical modeling process. Certain things are difficult or

impossible to infer from quantitative measurements and mathe-

matical models of social networks, particularly in regard to

understanding why things happen in the network, as computational

models tend to focus on how. Questions about relationship-links

severing, tight networks dissolving, and who or what caused the

break, can be very difficult to answer, but they are important with

regard to understanding the dynamics of the social network. By

including data concerned with answering why in social networks,

we add a new level of understanding to the quantitative data.

WiFi Data. For the 2012 deployment, between August 2012

and May 2013, we were granted access to the campus WiFi system

logs. Every 10 minutes the system provided metadata about all

devices connected to the wireless access points on campus (access

point MAC address and building location), together with the

student ID used for authentication. We collected the data in a de-

identified form, removing the student IDs and matching the

participants with students in our study. Campus WiFi data was not

collected for the 2013 deployment.

Backend System
The backend system, used for data collection, storage, and

access, was developed separately for the 2012 and 2013

deployments. The system developed in 2012 was not designed

for extensibility, as it focused mostly on testing various solutions

and approaches to massive sensor-driven data collection. Building

on this experience, the system for the 2013 deployment was

designed and implemented as an extensible framework for data

collection, sharing, and analysis.

The 2012 Deployment. The system for the 2012 deployment

was built as a Django web application. The data from the

participants from the multiple sources, were stored in a CouchDB

database. The informed consent was obtained by presenting a

document to the participants after they authenticated with

university credentials. The mobile sensing data was stored in

multiple databases inside a single CouchDB instance and made

available via an API. Participants could access their own data,

using their university credentials. Although sufficient for the data

collection and research access, the system performance was not

adequate for exposing the data for real-time application access,

mainly due to the inefficient de-identification scheme and

insufficient database structure optimization.

The 2013 Deployment. The 2013 system was built as an

open Personal Data System (openPDS) [147] in an extensible

fashion. The architecture of the system is depicted in Figure 2 and

consisted of three layers: platform, services, and applications. In

the platform layer, the components common for multiple services

were grouped, involving identity provider and participant-facing

portal for granting authorizations. The identity provider was based

on OpenID 2.0 standard and enabled single sign-on (SSO) for

multiple applications. The authorizations were realized using

OAuth2 and could be used with both web and mobile

applications. Participants enroll into studies by giving informed

consent and subsequently authorizing application to submit and

access data from the study. The data storage was implemented
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using MongoDB. Participants can see the status and change their

authorizations on the portal site, the system included an

implementation of the Living Informed Consent [3].

Deployment Methods
Organizing studies of this size is a major undertaking. All parts

from planning to execution have to be synchronized, and below

we share some considerations and our approaches. While their

main purpose was identical, the two deployments differed greatly

in size and therefore also in the methods applied for enrolling and

engaging the participants.

SensibleDTU 2012. In 2012 approximately 1,400 new

students were admitted to the university, divided between two

main branches of undergraduate programs. We focused our efforts

on the larger branch containing 900 students, subdivided into 15

study lines (majors). For this deployment we had *200 phones

available to distribute between the students. To achieve maximal

coverage and density of the social connections, we decided to only

hand out phones in a few selected majors that had a sufficient

number of students interested in participating in the experiment.

Directly asking students about their interest in the study was not a

good approach, as it could lead to biased estimates and would not

scale well for a large number of individuals. Instead, we appealed

to the competitive element of human nature by staging a

competition, running for two weeks from the start of the semester.

All students had access to a web forum, which was kept separate

for each major, where they could post ideas that could be realized

by the data we would collect, and subsequently vote for their own

ideas or three seed ideas that we provided. The goal of the

competition was twofold; first we wanted students to register with

their Facebook account, thereby enabling us to study their online

social network, and second we wanted to see which major could

Figure 2. Sensible Data openPDS architecture. This system is used in the 2013 deployment and consists of three layers: platform, services, and
applications. The platform contains element common for multiple services (in this context: studies). The studies are the deployments of particular
data collection efforts. The applications are OAuth2 clients to studies and can submit and access data, based on user authorizations.
doi:10.1371/journal.pone.0095978.g002
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gain most support (percentage of active students) behind a single

idea. Students were informed about the project and competition

by the Dean in person and at one of 15 talks given—one at each

major. Students were told that our choice of participants would be

based on the support each major could muster behind their

strongest idea before a given deadline. This resulted in 24 new

research ideas and 1 026 unique votes. Four majors gained w93%

support for at least one idea and were chosen to participate in the

experiment.

The physical handing out of the phones was split into four

major sessions, in which students from the chosen majors were

invited; additional small sessions were arranged for students that

were unable to attend the main ones. At each session, participants

were introduced to our data collection methods, de-identification

schemes, and were presented with the informed consent form. In

addition, the participants were instructed to fill out the question-

naire. A small symbolic deposit in cash was requested from each

student; this served partially as compensation for broken phones,

but was mainly intended to encourage participants take better care

of the phones, than if they had received them for free [148]. Upon

receiving a phone, participants were instructed to install the data

collector application. The configuration on each phone was

manually checked when participants were leaving—this was

particularly important to ensure high quality of data.

This approach had certain drawbacks; coding and setting up the

web fora, manually visiting all majors and introducing them to the

project and competition, and organizing the handout sessions

required considerable effort and time. However, certain aspects

were facilitated with strong support from the central administra-

tion of the university. A strong disadvantage of the outlined

handout process is that phones were handed out 3–4 weeks into

the semester, thus missing the very first interactions between

students.

SensibleDTU 2013. The 2013 deployment was one order of

magnitude larger, with 1 000 phones to distribute. Furthermore,

our focus shifted to engaging the students as early as possible.

Pamphlets informing prospective undergraduate students about

the project were sent out along with the official acceptance letters

from the university. Early-birds who registered online via Face-

book using the links given in the pamphlet were promised phones

before the start of their studies. Students from both branches of

undergraduate programs were invited to participate (approxi-

mately 1 500 individuals in total), as we expected an adoption

percentage between 30% and 60%. Around 300 phones were

handed out to early-birds, and an additional 200 were handed out

during the first weeks of semester. As the adoption rate plateaued,

we invited undergraduate students from older years to participate

in the project.

The structure of the physical handout was also modified, the

participants were requested to enroll online before receiving the

phone. Moreover, the informed consent and the questionnaire

were part of the registration. Again, we required a symbolic cash

deposit for each phone. We pre-installed custom software on each

phone to streamline the handout process; students still had to

finalize set up of the phones (make them Bluetooth-discoverable,

activate WiFi connection, etc.).

For researchers considering similar projects with large scale

handouts, we recommend that the pool of subjects are engaged in

the projects as early as possible and be sure to keep their interest.

Make it easy for participants to contact you, preferably through

media platforms aimed at their specific age group. Establish clear

procedures in case of malfunctions. On a side note, if collecting

even a small deposit, when multiplied by a factor of 1 000, the total

can add up to significant amount, which must be handled

properly.

Methods: Privacy

When collecting data of very high resolution, over an extended

period, from a large population, it is crucial to address the privacy

of the participants appropriately. We measure the privacy as a

difference between what a participant understands and consents to

regarding her data, and what in fact happens to these data.

We believe that ensuring sufficient privacy for the participants,

in large part, is the task of providing them with tools to align the

data usage with their understanding. Such privacy tools must be of

two kinds: to inform, ensuring participants understand the

situation, and to control, aligning the situation with the

participant’s preferences. There is a tight loop where these tools

interact: as the participant grows more informed, she may decide

to change the settings, and then verify if the change had the

expected result. By exercising the right to information and control,

the participant expresses Living Informed Consent as described in

[3].

Not all students are interested in privacy, in fact we experienced

quite the opposite attitude. During our current deployments the

questions regarding privacy were rarely asked by the participants,

as they tended to accept any terms presented to them without

thorough analysis. It is our—the researchers’—responsibility to

make the participants more aware and empowered to make the

right decisions regarding their privacy: by providing the tools,

promoting their usage, and engaging in a dialog about privacy-

related issues.

In the 2012 deployment, we used a basic informed consent

procedure with an online form accepted by the participants, after

they authenticated with the university account system. The

accepted form was then stored in a database, together with the

username, timestamp, and the full text displayed to the par-

ticipant. The form itself was a text in Danish, describing the study

purpose, parties responsible, and participants’ rights and obliga-

tions. The full text is available at [149] with English translation

available at [150].

In the 2013 deployment, we used our backend solution

(described in Backend System Section) to address the informed

consent procedure and privacy in general. The account system,

realized as an OpenID 2.0 server, allowed us to enroll participants,

while also supporting research and developer accounts (with

different levels of data access). The sensitive Personally Identifiable

Information attributes (PIIs) of the participants were kept

completely separate from the participant data, all the applications

identified participants based only on the pseudonym identifiers.

The applications could also access a controlled set of identity

attributes for the purpose of personalization (e.g. greeting the

participant by name), subject to user OAuth2 authorization. In

the enrollment into the study, after the participant had accepted

the informed consent document—essentially identical to that from

2012 deployment—a token for a scope enroll was created and

shared between the platform and service (see Figure 2). The

acceptance of the document was recorded in the database by

storing the username, timestamp, hash of the text presented to the

participant, as well as the git commit identifying the version of the

form.

All the communication in the system was realized over HTTPS,

and endpoints were protected with short-lived OAuth2 bearer

tokens. The text of the documents, including informed consent,

was stored in a git repository, allowing us to modify everything,

while still maintaining the history and being able to reference
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which version each participant has seen and accepted. A single

page overview of the status of the authorizations, presented in

Figure 3, is an important step in moving beyond lengthy,

incomprehensible legal documents accepted by the users blindly

and giving more control over permissions to the participant.

In the 2013 deployment, the participants could access all their

data using the same API as the one provided for the researchers

and application developers. To simplify the navigation, we

developed a data viewer application as depicted in Figure 4,

which supports building queries with all the basic parameters in a

more user-friendly way than constructing API URLs. Simply

having access to all the raw data is, however, not sufficient, as it is

really high-level inferences drawn from the data that are important

to understand, for example Is someone accessing my data to see how fast I

drive or to study population mobility? For this purpose, we promoted the

development of a question & answer framework, where the high-

level features are extracted from the data before leaving the server,

promoting better participant understanding of data flows. This is

aligned with the vision of the open Personal Data Store [147].

Finally, for the purposes of engaging the participants in the

discussion about privacy, we published blogposts (e.g. https://

www.sensible.dtu.dk/?p = 1622), presented relevant material to

students, and answered their questions via the Facebook

page(https://www.facebook.com/SensibleDtu).

Results and Discussion

As described in the previous sections, our study has collected

comprehensive data about a number of aspects regarding human

behavior. Below, we discuss primary data channels and report

some early results and findings. The results are mainly based on

the 2012 deployment due to the availability of longitudinal data.

Figure 3. Authorizations page. Participants have an overview of the studies in which they are enrolled and which applications are able to submit
to and access their data. This is an important step towards users’ understanding what happens with their data and to exercising control over it. This
figure shows a translated version of the original page that participants saw in Danish.
doi:10.1371/journal.pone.0095978.g003
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Bluetooth and Social Ties
Bluetooth is a wireless technology ubiquitous in modern-day

mobile devices. It is used for short-range communication between

devices, including smartphones, hands-free headsets, tablets, and

other wearables. As the transmitters used in mobile devices are

primarily of very short range—between 5 and 10 m (16{33
feet)—detection of the devices of other participants (set in ‘visible’

mode) can be used as a proxy for face-to-face interactions [29]. We

take the individual Bluetooth scans in the form i,j,t,sð Þ, denoting

that device i has observed device j at time t with signal strength s.

Figure 4. Data viewer application. All the collected data can be explored and accessed via an API. The API is the same for research, application,
and end-user access, the endpoints are protected by OAuth2 bearer token. Map image from USGS National Map Viewer, replacing original image
used in the deployed application (Google Maps).
doi:10.1371/journal.pone.0095978.g004
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Figure 6. Face-to-face network properties at different resolution levels. Distributions are calculated by aggregating sub-distributions across
temporal window. Differences in rescaled distributions suggest that social dynamics unfold on multiple timescales.
doi:10.1371/journal.pone.0095978.g006

Figure 5. Weekly temporal dynamics of interactions. Face-to-face interaction patterns of participants in 5-minute time-bins over two weeks.
Only active participants are included, i.e. those that have either observed another person or themselves been observed in a given time-bin. On
average we observed 29 edges and 12 nodes in 5-minute time-bins and registered 10 634 unique links between participants.
doi:10.1371/journal.pone.0095978.g005
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Bluetooth scans do not constitute a perfect proxy for face-to-face

interactions [151], since a) it is possible for people within 10 m

radius not to interact socially, and b) it is possible to interact

socially over a distance greater than 10 m, nevertheless, they have

been successfully used for sensing social networks [31] or crowd

tracking [152].

Between October 1st, 2012 and September 1st, 2013, we

collected 12 623 599 Bluetooth observations in which we observed

153 208 unique devices. The scans on the participants’ phones

were triggered every five minutes, measured from the last time the

phone was powered on. Thus, the phones scanned for Bluetooth in

a desynchronized fashion, and not according to a global schedule.

To account for this, when extracting interactions from the raw

Bluetooth scans, we bin them into fixed-length time windows,

aggregating the scans within them. The resulting adjacency

matrix, W t does not have to be strictly symmetric, meaning that

participant i can observe participant j in time-bin t, but not the

other way around. Here we assume that Bluetooth scans do not

produce false positives (devices are not discovered unless they are

really there), and in the subsequent network analysis, we force the

matrix to be symmetric, assuming that if participant i observed

participant j, the opposite is also true.

The interactions between the participants exhibit both daily and

weekly rhythms. Figure 1 shows that the topology of the network

of face-to-face meetings changes significantly within single day,

revealing academic and social patterns formed by the students.

Similarly, the intensity of the interactions varies during the week,

see Figure 5.

Aggregating over large time-windows blurs the social interac-

tions (network is close to fully connected) while a narrow window

reveals detailed temporal structures in the network. Figure 6A

shows the aggregated degree distributions for varying temporal

resolutions, with P(k) being shifted towards higher degrees for

larger window sizes; this is an expected behavior pattern since

each node has more time to amass connections. Figure 6B presents

the opposite effect, where the edge weight distributions P(w) shift

towards lower weights for larger windows; this is a consequence on

definition of a link for longer time-scales or, conversely, of links

Figure 7. WiFi similarity measures. Positive predictive value (precision, ratio of number of true positives to number of positive calls, marked with
dashed lines) and recall (sensitivity, fraction of retrieved positives, marked with solid lines) as functions of parameters in different similarity measures.
A) In 98% of face-to-face meetings derived from Bluetooth, the two devices also sensed at least one common access point. D) Identical strongest
access point for two separate mobile devices is a strong indication of a face-to-face meeting.
doi:10.1371/journal.pone.0095978.g007
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appearing in each window on shorter timescales. To compare the

distribution between timescales, we rescale the properties accord-

ing to Krings et al. [153] as Q(x)~SxTP(x=SxT) with

SxT~
P

xP xð Þ (Figure 6C and 6D). The divergence of the

rescaled distributions suggest a difference in underlying social

dynamics between long and short timescales, an observation

supported by recent work on temporal networks [44,153,154].

WiFi as an Additional Channel for Social Ties
Over the last two decades, wireless technology has transformed

our society to the degree where every city in the developed world is

now fully covered by mobile [155] and wireless networks [156].

The data collector application for mobile phones was configured

to scan for wireless networks in constant intervals, but also to

record the results of scans triggered by any other application

running on the phone (‘opportunistic’ sensing). Out of the box,

Android OS scans for WiFi every 15 seconds, and since we

collected these data, our database contains 42 692 072 WiFi

observations, with 142 871 unique networks (SSIDs) between

October 1st, 2012 and September 1st, 2013 (i.e. the 2012

deployment). Below we present the preliminary result on WiFi

as an additional data-stream for social ties, to provide an example

of how our multiple layers of information can complement and

enrich each other.

For computational social science, using Bluetooth-based detec-

tion of participants’ devices as a proxy for face-to-face interactions

is a well-established method [19,29,31]. The usage of WiFi as a

social proxy has been investigated [157], but, to our knowledge,

has not yet been used in a large-scale longitudinal study. For the

method we describe here, the participants’ devices do not sense

Figure 8. Location and Mobility. We show the accuracy of the collected samples, radius of gyration of the participants, and identify patterns of
collective mobility.
doi:10.1371/journal.pone.0095978.g008
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each other, instead they record the visible beacons (in this instance

WiFi access points) in their environment. Then, physical proximity

between two devices—or lack thereof—can be inferred by

comparing results of the WiFi scans that occurred within a

sufficiently small time window. Proximity is assumed if the lists of

access points (APs) visible to both devices are similar according to a

similarity measure. We establish the appropriate definition of the

similarity measure in a data-driven manner, based on best fit to

Bluetooth data. The strategy is to compare the lists of results in 10-

minute-long time bins, which corresponds to the forced sampling

period of the WiFi probe as well as to our analysis of Bluetooth

data. If there are multiple scans within the 10-minute bin, the

results are compared pair-wise, and proximity is assumed if at least

one of these comparisons is positive. The possibility of extracting

face-to-face interactions from such signals is interesting, due to the

ubiquitous nature of WiFi and high temporal resolution of the

signal.

We consider four measures and present their performance in

Figure 7. Figure 7A shows the positive predictive value and recall

as a function of minimum number of overlapping access points

(jX\Y j) required to assume physical proximity. In approximately

98% of all Bluetooth encounters, at least one access point was seen

by both devices. However, the recall drops quickly with the

increase of their required number. This measure favors interac-

tions in places with a high number of access points, where it is

more likely that devices will have a large scan overlap. The result

confirms that lack of a common AP has a very high positive

predictive power as a proxy for lack of physical proximity, as

postulated in [158]. Note, that for the remaining measures, we

assume at last one overlapping AP in the compared lists of scan

results.

The overlap coefficient defined as overlap(X ,Y )~
jX\Y j

min (jX j,jY j)
penalizes encounters taking place in WiFi-dense areas, due to higher

probability of one device picking up a signal from a remote access

point that is not available to the other device, see Figure 7B.

Next, we compare the received signal strengths between

overlapping routers using the mean ‘1-norm (mean Manhattan

distance,
jjX\Y jj1
jX\Y j ). Received signal strength (RSSI) is measured

in dBm and the Manhattan distance between two routers is the

difference in the RSSI between them, measured in dB. Thus, the

mean Manhattan distance is the mean difference in received signal

strength of the overlapping routers in the two compared scans.

Finally, we investigate the similarity based on the router with

the highest received signal strength—the proximity is assumed

whenever it is the same access point for both devices,

max(X )~max(Y ). This measure provides both high recall and

positive predictive value and, after further investigation for the

causes for errors, is a candidate proxy for face-to-face interactions.

The performance of face-to-face event detection based on WiFi

can be further improved by applying machine-learning approach-

es [158,159]. It is yet to be established, by using longitudinal data,

whether the errors in using single features are caused by inherent

noise in measuring the environment, or if there is a bias that could

be quantified and mitigated. Most importantly, the present

analysis is a proof-of-concept and further investigation is required

to verify if networks inferred from WiFi and Bluetooth signals are

satisfyingly similar, before WiFi can be used as an autonomous

channel for face-to-face event detection in the context of current

and future studies. Being able to quantify the performance of

multi-channel approximation of face-to-face interaction and to

apply it in the data analysis is crucial to address the problem of

missing data, as well as to estimate the feasibility and understand

the limitations of single-channel studies.

Location and Mobility
A number of applications ranging from urban planning, to

traffic management, to containment of biological diseases rely on

the ability to accurately predict human mobility. Mining location

data allows extraction of semantic information such as points of

interest, trajectories, and modes of transportation [160]. In this

section we report the preliminary results of an exploratory data

analysis of location and mobility patterns.

Location data was obtained by periodically collecting the best

position estimate from the location sensor on each phone, as well

as recording location updates triggered by other applications

running on the phone (opportunistic behavior). In total we

collected 7 593 134 data points in 2012 deployment in the form

(userid, timestamp, latitude, longitude, accuracy). The best-effort

nature of the data presents new challenges when compared with

the majority of location mining literature, which focuses on high-

frequency, high-precision GPS data. Location samples on the

smartphones can be generated by different providers, depending

on the availability of the Android sensors, as explained in

developer.android.com/guide/topics/location/strategies.html. For

this reason, accuracy of the collected position can vary between a

few meters for GPS locations, to hundreds of meters for cell tower

location. Figure 8A shows the estimated cumulative distribution

function for the accuracy of samples; almost 90% of the samples

have a reported accuracy better than 40 meters.

We calculate the radius of gyration rg as defined in [38] and

approximate the probability distribution function using a gaussian

kernel density estimation, see Figure 8B. We select the appropriate

kernel bandwidth through leave-one-out cross-validation scheme

from Statsmodels KDEMultivariate class [161]. The kernel density

peaks around 102 km and then rapidly goes down, displaying a

fat-tailed distribution. Manual inspection of the few participants

with rg around 103 km revealed that travels abroad can amount to

Figure 9. Diversity of communication logs. Diversity is estimated
as the set of unique numbers that a person has contacted or been
contacted by in the given time period on a given channel. We note a
strong correlation in diversity (Pearson correlation of 0:75, p%0:05),
whereas the similarity of the sets of nodes is fairly low (on average
SsT~0:37).
doi:10.1371/journal.pone.0095978.g009
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such high mobility. Although we acknowledge that this density

estimation suffers due to the low number of samples, our

measurements suggest that real participant mobility is underesti-

mated in studies based solely on CDRs, such as in [38], as they fail

to capture travels outside of the covered area.

Figure 8C shows a two-dimensional histogram of the locations,

with hexagonal binning and logarithmic color scale (from blue to

red). The red hotspots identify the most active places, such as the

university campus and dormitories. The white spots are the

frequently visited areas, such as major streets and roads, stations,

train lines, and the city center.

From the raw location data we can extract stop locations as

groups of locations clustered within distance D and time T [162–

165]. By drawing edges between stop locations for each

participant, so that the most frequent transitions stand out, we

can reveal patterns of collective mobility (Figure 8D).

Call and Text Communication Patterns
With the advent of mobile phones in the late 20th century, the

way we communicate has changed dramatically. We are no longer

restricted to landlines and are able to move around in physical

space while communicating over long distances.

The ability to efficiently map communication networks and

mobility patterns (using cell towers) for large populations has made

it possible to quantify human mobility patterns, including

investigations of social structure evolution [166], economic

development [67], human mobility [37,38], spreading patterns

[57], and collective behavior with respect to emergencies [60]. In

Figure 10. Weekly temporal dynamics of interactions. All calls and SMS, both incoming and outgoing, were calculated over the entire dataset
and averaged per participant and per week, showing the mean number of interactions participants had in a given weekly bin. Light gray denotes
5pm, the time when lectures end at the university, dark gray covers night between 12 midnight and 8am. SMS is used more for communication
outside regular business hours.
doi:10.1371/journal.pone.0095978.g010

Figure 11. Daily activations in three networks. One day (Friday) in a network showing how different views are produced by observing different
channels.
doi:10.1371/journal.pone.0095978.g011
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Figure 12. Face-to-face and online activity. The figure shows data from the 2013 deployment for one representative week. Online: Interactions
(messages, wall posts, photos, etc.) between participants on Facebook. Face-to-Face: Only the most active edges, which account for 80% of all
traffic, are shown for clarity. Extra Info. F2F: Extra information contained in the Bluetooth data shown as the difference in the set of edges. Extra
Info. Online: Additional information contained in the Facebook data.
doi:10.1371/journal.pone.0095978.g012

Figure 13. Network similarity. Defined as the fraction of ties from one communication channel that can be recovered by considering the top k
fraction of edges from a different channel. Orange dashed line indicates the maximum fraction of ties the network accounts for. The strongest 10% of
face-to-face interactions account for w50% of online ties and *90% of call ties, while 23:58% of Facebook ties and 3:85% of call ties are not
contained in the Bluetooth data. Between call and Facebook, the 10% strongest call ties account for v3% while in total w80% of Facebook ties are
unaccounted. All values are calculated for interactions that took place in January 2014.
doi:10.1371/journal.pone.0095978.g013
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this study, we have collected call logs from each phone as (caller,

callee, duration, timestamp, call type), where the call type could be

incoming, outgoing, or missed. Text logs contained (sender,

recipient, timestamp, incoming/outgoing, one-way hash of con-

tent).

In the 2012 deployment we collected 56 902 incoming and

outgoing calls, of which 42 157 had a duration longer than zero

seconds. The average duration of the calls was SdT~142:04s,

with a median duration of 48:0s. The average ratio between

incoming and outgoing calls for a participant was rin=out~0:98. In

the same period, we collected 161 591 text messages with the

average ratio for a participant rin=out~1:96.

We find a Pearson correlation of 0:75 (p%0:05) between the

number of unique contacts participants contacted via SMS and

voice calls, as depicted in Figure 9. However, the similarity

s~jNcall\Ntextj=jNcall|Ntextj between the persons a participant

contacts via calls (Ncall ) and SMS (Ntext) is on average SsT~0:37,

suggesting that even though participants utilize both forms of

communication in similar capacity, those two are, in fact, used for

distinct purposes.

Figure 10 shows the communication for SMS and voice calls

(both incoming and outgoing, between participants and with the

external world) as a time series, calculated through the entire year

and scaled to denote the mean count of interactions participants

had in given hourly time-bins in the course of a week. Also here,

we notice differences between the two channels. While both clearly

show a decrease in activity during lunch time, call activity peaks

around the end of the business day and drops until next morning.

In contrast, after a similar decrease that we can associate with

commute, SMS displays another evening peak. Also at night, SMS

seems to be a more acceptable form of communication, with

message exchanges continuing late and starting early, especially on

Friday night, when the party never seems to stop.

We point out that the call and SMS dynamics display patterns

that are quite distinct from face-to-face interactions between

participants as seen in Figure 5. Although calls and SMS

communication are different on the weekends, the difference is

not as dramatic as in the face-to-face interactions between the

participants. This indicates that the face-to-face interactions we

observe during the week are driven primarily by university-related

activities, and only few of these ties manifest themselves during the

weekends, despite the fact that the participants are clearly socially

active, sending and receiving calls and messages.

In Figure 11, we focus on a single day (Friday) and show

activation of links between participants in three channels: voice

calls, text messages, and face-to-face meetings. The three networks

show very different views of the participants’ social interactions.

Online friendships
The past years have witnessed a shift in our interaction patterns,

as we have adapted new forms of online communication.

Facebook is to date the largest online social community with

more than 1 billion users worldwide [167]. Collecting information

about friendship ties and communication flows allows us to

construct a comprehensive picture of the online persona.

Combined with other recorded communication channels we have

an unparalleled opportunity to piece together an almost complete

picture of all major human communication channels. In the

following section we consider Facebook data obtained from the

2013 deployment. In contrast to the first deployment, we also

collected interaction data in this deployment. For a representative

week (Oct. 14–Oct. 21, 2013), we collected 155 interactions (edges)

between 157 nodes, yielding an average degree SdT~1:98,

average clustering ScT~0:069, and average shortest path in the

giant component (86 nodes) SlT~6:52. The network is shown in

the left-most panel of Figure 12. By comparing with other channels

we can begin to understand how well online social networks

correspond to real life meetings. The corresponding face-to-face

network (orange) is shown in Figure 12, where weak links, i.e.

edges with fewer than 147 observations (20%) are discarded.

Corresponding statistics are for the 307 nodes and 3 217 active

edges: SdT~20:96, ScT~0:71, and SlT~3:2. Irrespective of the

large difference in edges, the online network still contains valuable

information about social interactions that the face-to-face network

misses—red edges in Figure 12.

A simple method for quantifying the similarity between two

networks is to consider the fraction of links we can recover from

them. Sorting face-to-face edges according to activity (highest first)

we consider the fraction of online ties the top k Bluetooth links

correspond to. Figure 13A shows that 10% of the strongest

Bluetooth ties account for more than 50% of the Facebook

interactions. However, as noted before, the Bluetooth channel

does not recover all online interactions—23:58% of Facebook ties

are unaccounted for. Applying this measure between Bluetooth

Figure 14. Personality traits. Violin plot of personality traits. Summary statistics are: openness mO~3:58, sO~0:52; extraversion mE~3:15,
sE~0:53; neuroticism mN~2:59 sN~0:65; agreeablenes mA~3:64 sA~0:51; conscientiousness mC~3:44 sC~0:51. Mean values from our
deployment (red circles) compared with mean values reported for Western Europe (mixed student and general population) [170] (orange diamonds).
doi:10.1371/journal.pone.0095978.g014
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and voice calls (Figure 13B) shows a similar behavior, while there is

low similarity between voice calls and Facebook ties (Figure 13C).

Personality traits
While the data from mobile sensing and online social networks

provide insights primarily into the structure of social ties, we are

also interested in the demographics, psychological and health

traits, and interests of the participants. Knowing these character-

istics, we can start answering questions about the reasons for the

observed network formation; why are ties created and what drives

their dynamics? For example, homophily plays a vital role in how

we establish, maintain, and destroy social ties [168].

Within the study, participants answered questions covering the

aforementioned domains. These questions included the widely

used Big Five Inventory [135] measuring five broad domains of

human personality traits: openness, extraversion, neuroticism,

agreeableness, and conscientiousness. The traits are scored on a 5-

point Likert-type scale (low to high), and the average score of

Figure 15. Correlation between personality traits and communication. Data from the 2013 deployment for N = 488 participants, showing
communication only with other study participants. Extraversion, the only significant feature across all networks is plotted. The red line indicates mean
value within personality trait. Random spikes are due to small number of participants with extreme values. E) Pearson correlation between Big Five
Inventory personality traits and number of Facebook friends Nfs, volume of interactions with these friends Nff , number of friends contacted via voice
calls Nc and via SMS Ns. *: pv0:05, **: pv0:01, ***: pv0:001.
doi:10.1371/journal.pone.0095978.g015
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questions related to each personality domain are calculated. As Big

Five has been collected for various populations, including a

representative sample from Germany [169] and a representative

sample covering students mixed with the general population from

Western Europe [170], we report the results from the 2012

deployment in Figure 14, suggesting that our population is

unbiased with respect to these important traits.

Following the idea that personality is correlated with the

structure of the social networks, we examine how the Big Five

Inventory traits relate to the communication ego networks of the

participants: number of Facebook friends, amount of communi-

cation with these friends, number of people ever contacted over

voice calls or SMS. We only consider communication within the

study, in the 2013 deployment for N = 488 participants for whom

complete and longitudinal data was available. It is worth noting

that participants answered the questions very early in the

semester, and that we anecdotally know that a vast majority of

the friendships observed between participants are ‘new’ in that

they are between people who met when they started studying.

Thus, we mainly observe the effect of personality on the network

structure, not the other way around. The results are consistent

with the literature, where Extraversion was shown to be

correlated with number of Facebook friends [171]. Extending

this result, Figure 15 depicts the correlation between Extraversion

and number of Facebook friends (structural network) Nfs (Figure

15A), volume of interactions with these friends (functional

network) Nff (Figure 15B), number of friends contacted via voice

calls Nc (Figure 15C), and number of friends contacted via SMS

Ns (Figure 15D). In Table 15E, we show the (Pearson) correlation

between all five traits and the aforementioned communication

channels, reporting only significant results. The values of

correlation for Extroversion are consistent across the networks,

and are close to those reported in [171,172] (*0:2). Following

the result from Call & Text Communication Patterns Section,

where we showed that the communication in SMS and call

networks are similar in volume, however have limited overlap in

terms of who participants contact, both those channels show

similar correlation with Extraversion. Here, we only scratched the

surface with regard to the relation between personality and

behavioral data. The relation between different behavioral

features, network structure, and personality has been studied in

[173–176]. By showing the impact of Extraversion on the

network formed with participants inside the study is consistent

with values reported for general populations, we indicate that

within the Copenhagen Networks Study, we capture a true social

system, with different personalities positioned differently in the

network.

Perspectives

We expect that the amount of data collected about human

beings will continue to increase. New and better services will be

offered to users, more effective advertising will be implemented,

and researchers will learn more about human nature. As the

complexity and scale of studies on social systems studies grows,

collection of high-resolution data for studying human behavior will

become increasingly challenging on multiple levels, even when

offset by the technical advancements. Technical preparations,

administrative tasks, and tracking data quality are a substantial

effort for an entire team, before even considering the scientific

work of data analysis. It is thus an important challenge for the

scientific community to create and embrace re-usable solutions,

including best practices in privacy policies and deployment

procedures, supporting technologies for data collection, handling,

and analysis methods.

The results presented in this paper—while still preliminary

considering the intended multi-year span of the project—clearly

reveal that a single stream of data rarely supplies a comprehensive

picture of human interactions, behavior, or mobility. At the same

time, creating larger studies, in terms of number of participants,

duration, channels observed, or resolution, is becoming expensive

using the current approach. The interest of the participants

depends on the value they get in return and the inconvenience the

study imposes on their lives. The inconvenience may be measured

by decreased battery life of their phones, annoyance of answering

questionnaires, and giving up some privacy. The value, on the

other hand, is classically created by offering material incentives,

such as paying participants or, as in our case, providing

smartphones and creating services for the participants. Providing

material incentives for thousands or millions of people, as well as

the related administrative effort of study management, may simply

not be feasible.

In the not-so-distant future, many studies of human behavior

will move towards accessing already existing personal data. Even

today we can access mobility of large populations, by mining data

from Twitter, Facebook, or Flickr. Or, with participants’

authorizations, we can track their activity levels, using APIs of

self-tracking services such as Fitbit or RunKeeper. Linking across

multiple streams is still difficult today (the problem of data silos),

but as users take more control over their personal data, scientific

studies can become consumers rather than producers of the

existing personal data.

This process will pose new challenges and amplify the existing

ones, such as the replicability and reproducibility of the results or

selection bias in the context of full end-user data control. Still, we

expect that future studies will increasingly rely on the existing data,

and it is important to understand how the incomplete view we get

from such data influences our results. For this reason, we need

research testbeds—such as the Copenhagen Networks Study—

where we study ‘deep data’ in the sense of multi layered data streams,

sampled with high temporal resolution. These deep data will allow us

to unlock and understand the future streams of big data.
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