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Abstract

The digital traces we leave behind when engaging with the modern world offer an interesting

lens through which we study behavioral patterns as expression of gender. Although gender

differentiation has been observed in a number of settings, the majority of studies focus on a

single data stream in isolation. Here we use a dataset of high resolution data collected using

mobile phones, as well as detailed questionnaires, to study gender differences in a large

cohort. We consider mobility behavior and individual personality traits among a group of

more than 800 university students. We also investigate interactions among them expressed

via person-to-person contacts, interactions on online social networks, and telecommunica-

tion. Thus, we are able to study the differences between male and female behavior captured

through a multitude of channels for a single cohort. We find that while the two genders are

similar in a number of aspects, there are robust deviations that include multiple facets of

social interactions, suggesting the existence of inherent behavioral differences. Finally, we

quantify how aspects of an individual’s characteristics and social behavior reveals their gen-

der by posing it as a classification problem. We ask: How well can we distinguish between

male and female study participants based on behavior alone? Which behavioral features

are most predictive?

Introduction

For many decades, gender differentiation has been studied as an interdisciplinary topic and

within a variety of fields including psychology, social science, anthropology, history, and biol-

ogy. Existing studies have explored the nature of the existing gender differences, their origin,

and impact on individuals’ lives. How to interpret the observed deviation between women and

men is subject to debate among scholars. It is, however, universally accepted that behavioral

differences are rooted in the different biological roles, and are reinforced by a society’s values

and cultural beliefs.

Previous research has shown that gender-specific inequalities might originate from biologi-

cal predispositions (e.g. hormones [1], brain structure [2]), as well as the organization of

the hunter-gatherer societies in which humans initially evolved [3]. This differentiation is
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subsequently aggravated by cultural/societal expectations [1, 4], which are likely to lead the

two genders to develop and maintain their social ties in different ways [5]. The study of social

networks is essential for understanding how gender role influences the nuances observed in

the structure and evolution of these social interactions. Although it does not provide answers

regarding the origins of the gender differences in social behavior, it can help identify and

understand these discrepancies to a larger extent.

Below, we first explore individual-level characteristics, specifically the psychological traits

and mobility behavior within the cohort, noting that both these aspects have been found to

relate strongly to social behavior [6, 7]. Next, we focus on social traits. For the two gender-

groups, we evaluate similarities and differences with respect to social network role. Our analy-

sis of social networks is based on longitudinal data describing person-to-person interactions

(physical proximity using Bluetooth scans), calls and text messages, and online friendships

(based on Facebook communication activity). Finally, we use classification models to quantify

the extent to which a person’s gender can be inferred from their observed characteristics and

behavior.

Data

The basis of this paper is the Copenhagen Network Study (CNS), a study focusing on nearly 800

freshmen at the Technical University of Denmark [8] who volunteered to donate data via

Nexus 4 smartphones. The bulk of data collection was behavioral data from from the smart-

phones, supplemented with data from online questionnaires and 3rd party APIs, such as the

Facebook Graph API. The derived datasets include:

• Friendship graph and interactions (comments on wall posts) from Facebook,

• Person-to-person proximity events, measured using Bluetooth,

• Telecommuncation data (call and text message logs; only metadata, no content),

• Location records (based on GPS and WiFi),

• Questionnaires (responses to personality questionnaires, described in detail below).

This work is based on data collected between September 2013 and May 2014. The number of

active participants and the quality of their data varies over the duration of the observation. To

eliminate the effect of missing data on statistics, we calculate all indicators and network prop-

erties on a weekly basis and average for each individual. Participants with three active weeks or

less during the nine-month period are excluded from the analysis.

After this filtering, this dataset consists of 166 female and 601 male students. In order to

avoid the difference in population sizes affecting the standard deviations, we apply subsam-

pling over the male and female population separately and calculate the distribution over the

mean of the random sub-samples.

Below, unless otherwise specified, we use the following strategy to compare the two

(female/male) classes. We we draw 1000 random subsamples, each equal to the half of the orig-

inal class size from each class. Then, we perform pairwise comparisons between subsamples.

We test the null hypothesis that the means of the two sampling distributions are identical (a

two-tailed test).

In order to compare results across domains (personality, mobility, social interactions, etc)

we measure the differences in distributions between the two genders using effect size r,
defined as the ratio between the means of each distribution x1, x2 and the pooled standard
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deviation σp:

r ¼
mðx1Þ � mðx2Þ

spðx1; x2Þ
; ð1Þ

where σp(x1, x2) is defined via

spðx1; x2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjx1j � 1Þ � s2ðx1Þ þ ðjx2j � 1Þ � s2ðx2Þ

jx1j þ jx2j � 2

s

ð2Þ

and σ2(x) is given by

s2ðxÞ ¼
1

n � 1

Xn

i¼1

ðxi � mðxÞÞ2: ð3Þ

Personality

In this section, we investigate how gender differences are expressed through personality met-

rics. Data from responses to personality questionnaires show that although there are consider-

able variations within a gender, differences between males and females exist in a number of

traits and at every age. As part of the CNS study, we consider the following dimensions of per-

sonality, which are listed below along with the central gender-related results pertaining to that

measure.

Big Five. The Big Five Inventory (BFI) is a widely used method for assessing human personal-

ity using five broad factors: openness, extraversion, neuroticism, agreeableness, and conscien-
tiousness [9]. To measure big five, we use the questionnaire developed in Ref. [9]. Previous

work has consistently found women to be more neurotic and agreeable than men [3, 10–

14]. There is less of a consensus with respect to gender differences in the remaining BFI

attributes. For instance, some studies report higher conscientiousness and openness among

women, while others find men as more conscientious [11, 12]. Detailed description of each

personality trait and reference to additional literature are provided in Table 2.

Self-esteem. We use the definition that self-esteem is a feeling of self-worth [15] and use

Rosenberg’s 10-item instrument to measure it [15]. Feingold [14] found that males have

slightly higher self-esteem than females, and Kling et al. [16] showed that this effect

increases considerably in late adolescence. However, other studies exist that show no signif-

icant difference between males and females with respect to self-esteem [4].

Narcissism. Narcissism has been previously found to be positively correlated with self-esteem

[17, 18]. Here we assess Narcissism using the Narcissistic Admiration and Rivalry Ques-

tionnaire (NAR-Q), which integrates two distinct cognitive and behavioral aspects of nar-

cissism: the tendency to approach social admiration through self-enhancement, and the

tendency for an antagonistic self-defense (rivalry) [19]. The literature is consistent here:

men tend to be more narcissistic than women, regardless the age and income [20–23].

Stress. Several studies have been conducted to measure stress levels among students in higher

education, reporting that female students tend to have more stress (and more stressors)

than male students, regardless of the instrument used for measurement [24–27]. In this

study, we measure stress with the widely used Perceived Stress Scale (PSS) [28].

Locus of control. Locus of control reflects the extent to which a person perceives a reward or

reinforcement as contingent on his own behavior (internal locus) or as dependent on
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chance or environmental control (external locus) [29]. We measure locus of control using a

simplified, 13 item scale proposed by Goolkasian (see: http://www.psych.uncc.edu/

pagoolka/LC.html). A lower score corresponds to internal locus, whereas a higher score

indicates external locus. In general, the two genders have not been found to differ with

respect to this psychological trait [14, 29–31]. Lefcourt [32] argued that those who are classi-

fied as having an internal locus of control not only perceive but also desire more personal

control than individuals with an external locus and found a that females desired greater

internal control than males. However, women have been found to favor external control in

items related to academic achievements [33].

Satisfaction with life. Satisfaction with life constitutes a judgment of one’s life in which the

criteria for judgment are up to the person [34]. We use the satisfaction with Life Scale

(SWLS) instrument [35], which has been widely used to assess subjective well-being within

various groups of population. The SWLS includes five generic statements, in which a sub-

ject must respond with a 1-7 scale, indicating the degree of agreement or disagreement.

Results regarding gender have been shown to be highly dependent on age. Specifically, ado-

lescent and elderly males have higher life satisfaction than females, while no observable dif-

ference is found among young adults [36, 37].

Loneliness. We measure loneliness using the UCLA Loneliness Scale, a 20-item scale, in which

a subject must indicate how often they feel an item characterizes them [38]. Male college

students have been found to be more lonely than female students [38, 39]. It has also been

shown that men are less willing to acknowledge feelings of loneliness, due to their more

pronounced negative consequences of admitting to this feeling [40, 41].

In summary, women tend to score higher with respect to negative emotionality (such as

neuroticism and stress) than men, but it has been argued that this may be due to females more

readily admitting to or perceiving such intense feelings. Individualism also plays an important

role in personality differences between the two genders. In the present study, we analyze the

gender effect on the aforementioned personality traits in an environment where females are

the numerical minority, and within a highly specific group of individuals (students at a techni-

cal university). The diverse dataset, however, allows us to combine the results from the ques-

tionnaires with the participants’ behavior in a natural setting.

Results

We test the null hypothesis that the two samples have equal means. We start with the Big

Five Inventory, and measure effect sizes between the two genders. Fig 1 shows the normal-

ized difference (i.e., the effect size) observed between males and females with respect to neu-

roticism, conscientiousness, agreeableness, extraversion, and openness. Each histogram

represents the distribution of the difference in means normalized by the pooled standard

deviation, and the mean in a subsample of females is subtracted from the mean in a subsam-

ple of males (for details on the effect size, see Eq (1)). The horizontal bars denote 5 and 95%

percentiles. Neuroticism exhibits the largest deviation, positioned far to the left from the

zero baseline (with a mean of dneu = −0.635), indicating that women score significantly

higher in this personality characteristic than men. We also find significant, albeit less pro-

nounced, differences with respect to conscientiousness (dcon = −0.436) and agreeableness

(dagr = −0.259). Finally, we do not find statistical significance in the average values of extra-

version (dext = −0.118) and openness (dope = 0.143). Fig 2 depicts the results describing the

remaining personality measures. Stress is significantly higher among women (dstr = −0.451),

while it is clear that men score higher in self-esteem (dse = 0.423). Overall, narcissism is
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higher among male students (dnar = 0.349), but mainly due to rivalry (driv = 0.334), which is

its antagonistic aspect and less because of admiration (dadm = 0.241), which constitutes the

assertive aspect of narcissism. We find that women score higher in I-E Rotter Scale (dloc =

−0.157), indicating a greater average sense of external locus of control. Women also score

higher with respect to satisfaction with life (dsat = −0.149). Finally, we find no statistically sig-

nificant difference for loneliness (dlon = 0.095).

Mobility

In this section we verify whether there are observable differences in mobility traces between

the participants of the two genders. We begin by providing a brief overview on the literature

Fig 1. Signed effect sizes of the BFI measured between men and women. We find female participants to

be more neurotic and agreeable, in line with previous research [3, 10–14]. Women in our study tend to be also

more conscientious, and we identify no significant differences in scores for extraversion and openness.

Negative values indicate that women achieve higher scores. Histograms show the distribution of effect sizes

defined by Eq (1), horizontal bars denote 5 and 95% percentiles.

https://doi.org/10.1371/journal.pone.0189873.g001

Fig 2. Signed effect sizes of personality traits measured between men and women. As indicated in

previous studies on college population, women tend to feel more stress than men [24–27] and have a more

external locus of control in items related to academic achievement [33]. Men prove to be more narcissistic

[20–23] and to have a higher feeling of self-worth [14, 16]. Despite these results, and in contrast with previous

literature, women in our study tend to report a higher satisfaction with life. Negative values indicate that

women achieve higher scores. Histograms show the distribution of effect sizes defined by Eq (1), horizontal

bars denote 5 and 95% percentiles.

https://doi.org/10.1371/journal.pone.0189873.g002
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discussing differences between male/female mobility patterns, then discuss findings from our

cohort.

There is a general consensus that mobility patterns are not gender neutral and womens’

mobility through urban space is distinguishable from mens’. Differences between men and

women in their mobility have been ascribed to various components of the gender role, such as

gender-related tasks, distinct family roles, and labor market position [42]. Men and women

are assumed to perform a similar number of trips, but with distance traveled and the mode of

transportation differing between them. Specifically, surveys conducted in Western countries

in the ’90s have demonstrated that women travel fewer kilometers than men and make more

trips as pedestrians and using public transportation [43, 44]. Moreover, the purpose of travel

tends to differ, with women traveling most frequently for household errands and men making

a majority of trips to work. Other studies explain the shorter commuting distances of women

as a result of their weaker position in the labor market [45]. Interestingly, females have been

observed to travel longer distances and explore larger areas in foraging tribes, the reason for

this difference is argued to originate from the fact that women are expected to return home

more frequently while gathering than men are while hunting [46].

Recent studies based on mobile phone records, however, have not observed substantial dif-

ferences in travel distances [47], regularity, and predictability of movements [48] between

male and female commuters. However, a study using travel diary data collected in Portland

reports higher levels of activity among part-time employed women than those of part-time

employed men throughout the day [49].

In conclusion, despite of recent advances in studying mobility behavior in detail based on

high resolution observational data, gender-based differences are rarely observed.

Results

We follow the same procedure as in personality-related measurements: we apply subsampling

to obtain equal sample sizes, calculate the effect size, and test the null hypothesis that the

means of the two distributions are equal.

A common quantitative description of mobility behavior is given by the distribution of

unique locations visited by an individual over some time period, e.g., using Pu(l), which is the

relative frequency of visiting location l by individual u [48, 50]. Relative frequency is given by

the relative time the individual spent at some location on a weekly basis. We analyze location

data obtained by periodically collecting the position estimate from the location sensor of the

students’ phones. The list of unique locations that characterize an individual is extracted as a

list of clusters of location measurements a DBSCAN-based algorithm developed in Ref. [51]

and validated in Ref. [52].

To further quantify individual mobility patterns, we measure the heterogeneity of the loca-

tions visited over time using entropy. Entropy is a measure of uncertainty or predictability of a

distribution. Here we use entropy to capture the heterogeneity of an individual’s time spent

across unique locations. Using Pu(l), it is defined as

Hu ¼ �
X

l2LðuÞ

PuðlÞ logPuðlÞ; ð4Þ

where L(u) denotes the set of locations for user u. Individuals distributing their time more

evenly are characterized by higher entropy. The effect sizes measured in the location related

metrics are shown in Fig 3. We find that women both visit more unique locations over time,

and they have more homogeneous time distribution over their visited locations than men,

indicating that time commitment of females is more widely spread across places.
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Networks and interactions

Now we turn our attention towards social interactions among the students. We begin by pro-

viding a brief overview on the literature discussing differences between male/female network

structures. We then discuss findings based on our cohort.

Previous work suggests that the sizes of real-world ego networks of the two genders are

drawn from similar distributions [53–55]. In contrast, women tend to have more friends

online, as seen in multiplayer games [56] or social networking services [57–59]. A study based

on Facebook data describing around 1800 U.S. college students found that females show

higher social activity and have greater betweenness centrality in their Facebook network com-

pared to males [60].

Social networks display high gender homophily, both offline [61, 62] and online [59, 63].

The extent of preferring same gender friends varies with age, with e.g. girls forming smaller,

more homogeneous groups than boys at young ages [64]. As soon as adolescents begin form-

ing romantic ties during puberty, women start to invest more heavily in opposite-sex relation-

ships; but they shift preferences to younger women (presumably daughters) as they age [65].

Men, on the other hand, are shown to increase their female contacts as they get older and

particularly at the end of their life cycle [66]. Interestingly, heterophily between genders is

prominent among the strongest ties. For instance, calls and text conversations are both more

frequent and longer among mixed-sex pairs of individuals [66, 67].

Homophily has been studied as a function of transitivity (a measure of the probability of

two individuals being connected provided they are both connected to the same alter) [68]. In

this case, structural factors, such as network proximity, have been found to have a stronger

effect on triadic closure compared to homophily [69]: a high number of shared contacts is a

better indicator of triadic closure than sharing an attribute. A study based on data from sev-

eral U.S. elementary schools reports that females form more triads than males and that dyads

consisting of females are more likely to be in triangles [70]. Kovanen et al. [71] studied tem-

poral gender homophily in 3-motifs using a large dataset of mobile phone records. They find

that female-only motifs are over-represented compared to a reference model, whereas male-

only motifs are under-represented. Contradicting the aforementioned findings, however, a

study based on data from the Spanish social networking site Tuenti, found high levels of

homophily in females’ dyads but a higher tendency of male users to form same-sex triangles

[63].

Women have not only been found to be more actively engaged in online interactions, but

also to spend more time engaged in phone conversation [72]. In a review paper, Smoreda

and Licoppe [73] report that women tend to disclose more information to correspondents

Fig 3. Effect sizes of the mobility indicators. We show that women are characterized by higher uncertainty

in their travel patterns and visit more unique places. This deviation has not been observed in recent literature.

Negative values indicate that women score higher than men. Histograms show the distribution of effect sizes

defined by Eq (1), horizontal bars denote 5 and 95% percentiles.

https://doi.org/10.1371/journal.pone.0189873.g003
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(especially about intimate topics) and are more expressive than males, which results in

longer conversations, whereas men communicate mainly for instrumental purposes. In

addition, other studies have shown that calls to a woman are longer than calls to a man

regardless the gender of the caller [66, 73]. Circadian rhythms in call patterns have revealed

further differences between men and women, with women making longer phone calls in the

evenings and during the night, and mainly when the recipient is a man (which indicates an

emphasis to romantic relationships) [74]. Likewise, young women have been reported to

send a greater number of text messages, especially if the receiver belongs to the opposite

gender [66].

In summary, previous studies found clear differences in the way men and women engage

with their social networks. However, most of the studies focus on a single channel of interac-

tions (e.g. online communications, behavior in an organization), failing to capture a potential

persistence or deviation of the characteristics across different settings. Here we use the CNS

data to compare communication across a number of different channels.

Results

We consider three types of communication: physical proximity (i.e., person-to-person) inter-

actions, Facebook activity, and mobile phone communication (calls and text messages). Previ-

ous studies have shown that each channels may describe different aspects of social ties and

potentially corresponding to different levels of connection intensity [75–79]. To illustrate

these differences, in Fig 4 we report the fraction of active links in each communication channel

over time. Note that the vertical scale is logarithmic, indicating an increased presence of prox-

imity links (purple pentagons), a moderate level of active Facebook connections (red circles)

and a comparably low level of active telecommunication links (bottom curves).

Fig 5 visualizes a single-day snapshot of the three networks in this study. The community

structure revealed in the person-to-person network is a fingerprint of the classes the students

Fig 4. Fraction of active dyads in the different networks. Curves show the ratio between existing and

potential links between participants in each network. All students attend classes at the same campus and eat

at the same cafeterias, so their proximity network is very dense (with 40% of dyads active). Only about 2-3%

of them actually connect as friends on Facebook, and less 1% communicate using calls, text messages, or

Facebook interactions. Each network is unweighted and aggregated over a month—a link exists between two

nodes if they had any interactions in a given channel during that month.

https://doi.org/10.1371/journal.pone.0189873.g004
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attend together. Less structure is observed in the Facebook feed network, which shows a single

large component; the call network is the most fragmented of all of the networks. The high level

of homophily in the proximity network is evident from the frequency of orange and blue lines,

which represent the female-female and male-male connections respectively, as well as cliques

that contain nodes of the same color. The call network shows the highest fraction of mixed

gender connections, a possible indicator of couples.

When investigating the networks between the study participants, we apply a different

approach to accounting for the imbalance male/female subjects than in case of personality and

mobility. Here, subsampling would alter the network structure and, thus, render e.g. measure-

ments of homophily and other network metrics meaningless. Instead, we use the following ref-

erence model: we randomly permute genders between participants with uniform probability

and then perform the calculations. Overall, we produce 2E network realizations, where E is the

number of edges in the network.

To approve or reject the null hypothesis that the network is independent of gender homo-

phily, we calculate the z-score, given by:

z ¼
x � mð~xÞ

sð~xÞ
: ð5Þ

Here, x is an indicator, mð~xÞ and sð~xÞ are the mean and standard deviation of the indicator in

the reference model. The z-score is expected to be zero if the null hypothesis is true.

To test the null hypothesis of no difference between the two gender groups, we draw the

permutation distribution of the differences between the two genders and measure where this

distribution falls relative to the mean difference of the empirical data. The p-values then are

calculated by dividing the number of permuted mean differences that are larger/smaller than

the one observed in the empirical data, by the number of items (2E) in the permutation

distribution.

We explore the influence of gender homophily on formation of friendships in the various

networks among the participants. To do this, we first identify the fraction of same-gender

friends out of all friends an individual has. Fig 6 shows the z-scores of various network connec-

tions obtained by comparison with the permutation model (see also Methods). Women have

remarkably more same gender friends than the ones measured with the reference model in

Fig 5. Snapshot of the three interaction networks: (a) person-to-person aggregated over one

weekday, (b) Facebook interactions (aggregated over a month) (c) phone call networks of the

students (aggregated over a month). Blue and orange nodes correspond to male and female students

respectively, link color denotes whether the connection is between the same genders; orange for female-

female, gray for mixed, and blue for male-male connections. The size of each node is proportional to their

degree and width of the links represents the frequency of interactions. The person-to-person network shows

clear separation into study groups, while this structure is no longer visible in communication networks.

https://doi.org/10.1371/journal.pone.0189873.g005
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online interactions and person-to-person interactions (z-score is 13.10 and 12.24 respectively).

On the other hand, men also show a preference for forming homophilous ties through mobile

communications, though to a less extent. To study whether men and women tend to form

closed triangles with same-gender alters, we count the various motifs in each network. Results

are shown in Fig 6 (color bars): male only (blue), female only (orange) and mixed (brown).

Furthermore, we compare the results with the respective distribution of the expected motifs

found in the reference model for the Facebook network (Fig 7). We find that male-only triads

are insignificantly underrepresented compared to the reference model, and that there are

more female-only motifs than what we would observe by chance (z = 13.101, p< .0001).

Whereas a similar pattern is observed in person-to-person interactions, same-gender motifs

are overrepresented for both genders in mobile communications. We conclude that women

prefer other women for both their dyadic and triadic relationships in every form of interaction,

while homophily is noticeable among males only in their trusted interactions through the

phone.

We find that women tend to have a significantly higher number of contacts than men in

both online and mobile networks, whereas the size of the person-to-person networks are simi-

lar. Fig 8 shows how degree varies over time in terms of mobile communication (calls); females

have more contacts during nearly the entire period of interest. We measure betweenness cen-

trality (see Methods for the definition) of each individual to investigate whether one gender

tends more prominently positioned in a network than the other. We find that women consis-

tently show higher betweenness indices, regardless of the mode of interaction.

Next we study the entropy of interactions. Similarly what we did for mobility distribution

in Eq (4), we calculate the entropy of the distribution of interactions over the contacts:

Su ¼ �
X

i2NðuÞ

PuðiÞ log 2 PuðiÞ; ð6Þ

where Pu(i) is the probability that user u interacts with their i-th contact in his ego-network

Fig 6. Homophilous connection patterns in the three interaction networks. Bars represent the z-scores of connection

motifs (containing two or three individuals) obtained from the comparison with the permutation model. Grey color

corresponds to dyadic connections, color bars denote triangles: male only (blue), female only (orange) and mixed (brown).

Women in the study are more likely to form same-gender triangles in all types of interaction networks.

https://doi.org/10.1371/journal.pone.0189873.g006
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N(u). The value of Su is estimated by the corresponding number of interactions relative to

all interactions performed by user u. Individuals who interact equal amounts with many

friends will have high entropy (and therefore can be characterized by lower predictability

[80], whereas those who limit the vast majority of their interactions to a small set of others

are expected to have low entropy (more predictable). In Fig 9, we plot the distribution of

Fig 7. Distributions of same-gender triangles in the Facebook friendship network. Empirical

observations (black dashed lines) are compared to the distribution of triangles measured in the ensemble of

null models. Values on the x-axis correspond to the number of same-gender triangles in the network. It is

noticeable that females form triangles with other females to a higher extent compared to the reference model,

whereas males show the reverse pattern.

https://doi.org/10.1371/journal.pone.0189873.g007

Fig 8. Degree of males and females per week in calls. Curves show the mean number of call contacts for

males (blue) and females (orange). Women tend to have more call contact on average than men throughout

the duration of the observation.

https://doi.org/10.1371/journal.pone.0189873.g008
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entropy effect sizes measured between males and females for the three interaction networks.

We observe a significant difference for Facebook and calls, with women displaying higher

entropy than men, indicating that females distribute their interactions with friends consider-

ably more homogeneously. In addition, females exchange remarkably more text messages

than males (p< .001). With respect to time spent on social interactions, we find that in our

study, women are described by significantly longer conversation times during phone calls

than men, regardless of the initiator of the call (p< .0001). The longest calls (on average) are

observed on ties where a male initiates contact to a female (with an average duration of 117

seconds), with second longest average call-durations observed between females (an average

duration of 114.56 seconds). The shortest average duration (71.52 seconds) is measured

between pairs of males.

Gender prediction

Based on the findings presented above, we consider the classification problem of predicting

gender based individual and social characteristics. In the literature, there have been attempts

to predict gender based on Call Detail Record (CDR) data using semi-unsupervised techniques

and deep-learning algorithms [81, 82]. De Montjoye et al. [83] found that gender is a strong

predictor of neuroticism, a trait that is seen in the literature to be consistently higher among

women. In this study, we combine the questionnaire data, mobility patterns, as well as social

interaction habits of each participant, to build a dataset that offers adequate complexity for

achieving a good performance in the gender-inference problem. Additionally, the machine

learning process also provides insight into the question: What are the most predictive behav-

ioral indicators of gender.

Results

We use the behavioral measures calculated above as features to train four different models:

logistic regressor, AdaBoost, support vector classifier (SVC), random forest, and gradient boosting
classifier implemented in the scikit-learn Python package [84]. Each models is evaluated using

10-fold stratified cross-validation. Each of the models underwent a hyper-parameter fine tun-

ing procedure described in detail in the Methods section.

Men constitute 78% of the study participants. This poses a significant imbalance in the data

and therefore, we measure performance using the area under receiver operating characteristic

Fig 9. Effect size distribution of network metrics. Women tend to exchange more text messages than

men and distribute their communication more evenly across their call and Facebook contacts. We do not

identify a significant difference in proximity entropy. Person-to-person proximity is, to a large extent, driven by

class schedule and participants have less choice regarding who they interact with. Negative values indicate

that women achieve higher scores. Histograms show the effect sizes of network related indicators (number of

text messages and entropy) between males and females. Horizontal bars denote the interval of 5 and 95%

percentiles.

https://doi.org/10.1371/journal.pone.0189873.g009
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curve (ROC-AUC) which is robust against imbalance, as well as using the F1 score that is sensi-

tive to the imbalance. The value of ROC-AUC can be interpreted as the probability that the

classifier is able to identify the female in of a male/female pair. The F1 score is the harmonic

mean of precision (what fraction of people identified as women are actually women) and recall

(what fraction of women are identified as women) at a selected threshold.

Results are summarized in Fig 10 for each classifier along with the corresponding values of

the random classifier based on the imbalance present in the data. All classifiers after the hyper-

parameter fine tuning procedure perform similarly well, with ROC-AUC values of 0.86 and F1

scores of 0.5 and higher (compared to a random classifier with ROC-AUC of 0.5 and F1 of 0.22).

Next, we investigate the question of which behavioral features are most informative regard-

ing gender. To do this, we use the feature importance obtained by fitting a random forest

model to the data (Fig 11). We find that that a tendency towards gender homophily in the

social networks is the most important behavioral feature; this is true for all three types of inter-

actions that we consider. Some aspects of personality are also important. Within the big five

traits, neuroticism and conscientiousness are most predictive, while narcissism and self-esteem

are most powerful among the remaining personality tests. High on the list, we also find various

communication related network characteristics. With respect to feature types, network indica-

tors are the most important ones, occupying five of the top six indicators.

Discussion

Conclusion

In this work we have studied gender differences within a population of freshmen. We have

been able to identify a number of gender differences in personality traits (measured via ques-

tionnaires), mobility patterns, as well as social network behavior based on person-to-person,

telecommunication, and online social networks.

Fig 10. Classifier performance in gender prediction. Reported are the ROC-AUC (black) and F1 (gray)

scores for the five classifiers considered in the gender prediction. Dashed lines mark the baseline obtained

from the random classifier that takes the imbalance into account. High values of area under receiver operating

characteristic (ROC-AUC) indicate a strong separation between men and women in the feature space: when

presented with a random male and a random female, the classifier will identify the female correctly 87% of

times.

https://doi.org/10.1371/journal.pone.0189873.g010
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Personality. Starting from gender differences with respect to personality, our findings are in

accordance with observations in the psychology literature on gender differences. Discrepancies

(or differences that are not significant) correspond to personality traits that, according to pre-

vious research, display ambiguous behavior over genders.

Mobility. With respect to mobility behavior, our results are not consistent with findings in

the literature. Previous work has found a restricted travel space for women [42], but we find

that women travel more than men on average.

Networks. Humans use multiple channels when we communicate: real-world conversations

unfold when we meet person-to-person, we call each other and send text messages, we engage

with Facebook posts and write comments, send email, and use other instant messaging plat-

forms. Based on the communication channels we have access to here, we find that each

of these channels plays a slightly different role with respect to gender similarities and differ-

ences. First, within all networks, we observe differences with respect to gender homophily, spe-

cifically an over-representation of female-only dyadic and triadic connections. This over-

representation is mostly emphasized in weak links, which is consistent with the literature [56,

59, 71, 85]. Males show a lower level of homophily. For stronger social ties (that is, contacts

require more effort to maintain), both genders show similar level of homophily. Second, we

find that women tend to simply communicate more. On average, females maintain more con-

tacts than males in the population, they exchange significantly more text messages, and talk

longer on the phone. This is expressed both via a larger number of contacts as well as a higher

Fig 11. Feature importance obtained by random forest. Color shows the corresponding feature types: BFI

(red), personality traits (green), mobility (yellow) and network (purple). The most important features are those

who help separate men from women most: women, on average, reveal higher degree of homophily,

neuroticism, and conscientiousness, while men tend to score higher in tests on narcissism, and self-esteem.

https://doi.org/10.1371/journal.pone.0189873.g011

The role of gender in social network organization

PLOS ONE | https://doi.org/10.1371/journal.pone.0189873 December 20, 2017 14 / 21

https://doi.org/10.1371/journal.pone.0189873.g011
https://doi.org/10.1371/journal.pone.0189873


entropy of neighbors. Furthermore, in agreement with a previous study on Facebook [60], we

find that, in general, women have more central positions in the network, as expressed through

a higher average betweenness centrality.

Predicting gender. Finally, we use the features discussed above to predict gender based on per-

sonality and behavioral patters. The prediction task is based on combined personality, mobility

and network features for each individual study participant, allowing us reveal the relative impor-

tance of each feature in predicting gender. We find that personal characteristics and social behav-

ior can be used to identify the gender of an individual with high performance (AUC = 0.87). We

find that network features are highly revealing, followed by personality test scores.

Limitations

Our results point out significant differences in various aspects of social behavior between

males and females, based on a population of nearly 800 freshmen at a large European univer-

sity. However, in order to have a clear understanding of the results, it is important to note the

limitations of the dataset as well as the methods applied, which we address in the following

paragraphs.

Population sizes. In our dataset, male population is around four times larger than the

female population. This skewed female/male ratio presents may present certain biases simply

because, in addition to gender differences, women may behave like a minority in some cases

(e.g. with respect to homophily in the social networks). The female/male ratio also presents

methodological challenges. We describe our approach to mitigate these issues, both at the indi-

vidual level as well as for the network analysis in the Methods section.

Demographics. The cohort of the CNS experiment consists of Danish and international

freshmen at a technical university. Population impose strong constraints on demographics,

with respect to age and social embeddedness. Furthermore, we do not have detailed demo-

graphic information regarding the contacts the participants made outside the experiment.

Although demographic information is necessary to understand the results, and individuals

located in Denmark indeed display different personal behavior (for example, a low overall

level of neuroticism), our results regarding the comparison of males and females are in agree-

ment with existing literature on personality traits.

Non-binary gender identification. In this work, as in Copenhagen Networks Study in

general, the participants reported their gender through a questionnaire that only offered two

options: female and male. This limiting distinction might have contributed to additional noise

in the measurement of differences as well as to lowering the performance of the models in the

gender-inference task.

Materials and methods

Ethics statement

The Danish Data Protection Agency has approved the overall project structure (data collec-

tion, anonymization, and storage), as well as the content of the current study, cf Journal: 2012-

41-066. The project complies with both local and EU regulations. All participants in the study

have provided written informed consent.

The data obtained from Facebook was collected in accordance with the Terms of Service.

Network metrics

We construct three types of networks representing the various interactions among the partici-

pants: physical proximity, Facebook, and call networks. We then aggregate them over time
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windows of one week. Only consenting participants of the CNS are included in the networks,

since we do not possess complete information (e.g, gender and social activity) about the other

contacts of the students. However, extending the ego networks of the students with individuals

outside the experiment (for instance, in the call networks), we can extract additional descrip-

tors about the participating students, such as their total number of contacts or distribution of

mobile phone conversation times.

In the present study we show statistics over different network metrics that are related to the

local structure of the graphs and the position and role of participants in the global network. In

the following, we provide a detailed description of the applied network metrics.

Degree. The number of contacts ki an individual has in their respective social network. We cal-

culate the degree in two different settings. First, by considering all contacts of a student, we

can infer the total degree (without referring to the gender of the contacts). Second, by limit-

ing the interactions to the participants, we calculate the degree describing same-gender

contacts.

Betweenness centrality. This measure quantifies the importance of an individual with respect

to information flow on the network, when the shortest paths are taken into account. It is

defined as:

CBðiÞ ¼
X

j6¼k6¼i

n‘jkðiÞ
n‘jk

: ð7Þ

Here, n‘jk denotes the number of shortest paths between individuals j and k among which

n‘jkðiÞ number of paths go through individual i. Therefore, betweenness effectively measures

the fraction of shortest paths that pass an individual, which is a precursor of their relevance

in case of any flow on the network (rumor propagation, spread of an infectious disease,

etc).

Imputation of missing values

Due to the method of data collection some fraction of students has missing data in

various channels. Overall, 21.5% of the participants exhibit missing data in at least one

channel. To address the problem, we first remove participants with missing features in

more than two of the five feature categories (personality, location, call, Facebook, and

person-to-person interactions). We then apply a KNN based imputation to the remaining

data [86], described as follows. For each user we find their k-nearest neighbors (with k = 7)

by calculating the average difference of non-missing features with other users. We only

use features that are present in the potential neighbor’s feature set, that is, if Luv = Fu \ Fv
denotes the set of overlapping features of users u and v, the distance between the users is

given as:

duv ¼
1

jLuvj

Xn

i¼1

jxðuÞi � xðvÞi j ð8Þ

where xðuÞi and xðvÞi are the values of the i-th feature for users u and v respectively, and

|Luv| is the size of the overlap set. Once the k-nearest neighbors of all users are determined,

for each student we impute their missing values by the average of the corresponding

non-missing feature values of their neighbors. If there is a single neighbor, their value is

assigned.
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Fine tuning of the machine learning models

We fine-tuned each of the models used in the gender prediction task. Through a grid search

with cross validation we found the set of hyper parameters for which each model achieved the

highest harmonic mean between F1 score and ROC-AUC on previously unseen data. Table 1

lists the parameter values in the grid. Optimal values are bold.

Personality traits

We consider eleven personality traits in the main paper, with five traits forming the Big Five

Inventory. Table 2 lists all the personality traits along with their definition and references to

the corresponding literature.

Table 1. Each model used in the gender prediction task was fine-tuned. Optimal values for each parameter are marked in bold.

Model Parameters

LogisticRegression C:{1, .2, .5, 1, 2, 5, 10}

RandomForestClassifier max_features:{all, sqrt, log2},

n_estimators:{1000}

GradientBoostingClassifier max_features:{all, sqrt, log2},

learning_rate:{0.001, 0.002, 0.005, .01, .02, .05},

n_estimators:{1000}

AdaBoostClassifier learning_rate:{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0},

n_estimators:{1000}

SVC C:{.01, .05, 0.1, .5, 1, 5, 10},

kernel:{linear, poly, rbf, sigmoid}

https://doi.org/10.1371/journal.pone.0189873.t001

Table 2. Definition of the personality traits considered in this paper for the male and female freshmen

students. Traits marked with an asterisk (*) are part of the Big Five Inventory. References provide further

reading on the various personality traits.

Personality trait Description

Openness* Describes original, independent, creative and daring behavior [9, 30, 87, 88].

Conscientiousness* Desribes how careful, reliable, hardworking and organized is one [9, 30, 87, 88].

Extraversion* Sociable, talkative, fun-loving and affectionate [9, 30, 87, 88].

Agreeableness* Good-natured, softhearted, trusting and courteous [9, 30, 87, 88].

Neuroticism* Describes worried, insecure, nervous and highly strung state [9, 30, 87, 88].

Self-esteem A 10-item instrument to define the “feeling of self-worth”. Example items are “I feel

that I have a number of good qualities” and “I certainly feel useless at times” [15].

Narcissism A 18-item instrument (Narcissistic Admiration and Rivalry Questionnaire) describing

a “grandiose view of the self, a strong sense of entitlement and superiority, as well as

tendencies to show dominant, charming, bragging, and aggressive behaviors” [19].

Perceived stress A 14-item instrument (Perceived Stress Scale) that measures “the degree to which

situations in one’s life are appraised as stressful” [28].

Locus of control A 29-item instrument (I-E Rotter Scale) to measure “the extent to which a person

perceives a reward or reinforcement as contingent on his own behavior (internal

locus) or as dependent on chance or environmental control (external locus)” [29, 32]

Satisfaction with life A 5-item instrument (Satisfaction with life scale) that measures “life satisfaction as a

cognitive-judgmental process”. An example item is “In most ways my life is close to

my ideal” [34, 35].

Loneliness A 25-item instrument (UCLA Loneliness Scale) describing the “perceived loneliness”

[38, 89].

https://doi.org/10.1371/journal.pone.0189873.t002
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