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ABSTRACT
Advertising funds a number of services that play a major role
in our everyday online experiences, from social networking, to
maps, search, and news. As the power and reach of advertising
platforms grow, so do the concerns about the potential for discrim-
ination associated with targeted advertising. However, despite our
ever-improving ability to measure and describe instances of unfair
distribution of high-stakes ads—such as employment, housing, or
credit—we lack the tools to model and predict the extent to which
alternative systems could address such problems. In this paper, we
simulate an ad distribution system to model the effects that en-
forcing popularly proposed fairness approaches would have on the
utility of the advertising platforms and their users. We show that
in many realistic scenarios, achieving statistical parity would come
at a much higher utility cost to platforms than enforcing predic-
tive parity or equality of opportunity. Additionally, we identify a
tradeoff between different notions of fairness, i.e., enforcing one
criterion leads to worse outcomes with respect to other criteria.
We further describe how pursuing fairness in situations where one
group of users is more expensive to advertise to is likely to result
in “leveling down” effects, i.e., not benefiting any group of users.
We show that these negative effects can be prevented by ensuring
that it is the platforms that carry the cost of fairness rather than
passing it on to their users or advertisers. Overall, our findings
contribute to ongoing discussions on fair ad delivery. We show that
fairness is not satisfied by default, that limiting targeting options is
not sufficient to address potential discrimination and bias in online
ad delivery, and that choices made by regulators and platforms may
backfire if potential side-effects are not properly considered.
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1 INTRODUCTION
Advertising is the backbone of a variety of online services, par-
ticularly those available to users for free. Websites and apps fund
their existence by offering screen space to parties that leverage vast
amounts of data to present the most profitable ads for each given
user. Search engines such as Google and Bing, as well as social
network platforms such as Meta and X (formerly known as Face-
book, Inc. and Twitter, respectively), have grown to control much
of this process by owning the screen real estate, data collection,
and ad matching processes. This accumulation of personal data has
obvious implications for privacy as well as trust and safety. The
functionality built atop this rich data, especially with respect to
detailed ad targeting, can be used by malicious actors. For example,
advertisers may choose to target their ads in discriminatory ways,
for example, by prohibiting older users from seeing job ads [4], or
non-white users from seeing housing opportunities [5].

Limiting the targeting options does not fully mitigate the po-
tential for discriminatory effects in advertising. Harmful effects
may stem from the process of optimizing ad delivery, even for non-
malicious advertisers: ads appearing in Google search are more
likely to suggest a criminal history when users search for individ-
uals with Black-sounding names, even if those individuals have
no such history [32, 43]; women may see fewer opportunity ads,
especially if the advertisers operate on smaller budgets, because of
the so-called competitive spillover effects [31]; similarly, the higher
costs of running informative online ads for SNAP (short for the
Supplemental Nutrition Assistance Program, which provides food
benefits to low-income families) targeting Spanish speakers, com-
pared to English speakers, mean that allocating funds to reach
Spanish-speaking audiences reduces the overall number of individ-
uals who can be informed and enrolled in the program [30]. Even
with appropriate budgets, Meta may deliver different job and hous-
ing opportunities based on the gender and race of the recipient, in
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pursuit of maximizing relevance [3]. All these phenomena translate
both to individual and societal harms. Those who are not presented
with opportunities within a particular field are less likely to seek
employment there. And even if they do apply, they are less likely
to be hired, if the employers see an indication of criminal history
while searching for their names.

The problem of unfair ad delivery has been recognized in both
the United States and the European Union. Meta has been forced
to address biases in housing ad delivery as part of a settlement
with the U.S. Department of Justice [47]. With the advent of the
Digital Services Act (DSA) in the EU, online platforms will need to
increase the transparency of online advertising and will be subject
to third-party audits for algorithmic biases. Additionally, the Digital
Markets Act (DMA) is already in effect, with initial investigations
into non-compliance by designated gatekeepers underway [20],
and the recently enacted AI Act classifies “AI systems [...] to place
targeted job advertisements” as high-risk [21, p. 425]). Furthermore,
studies such as that by Koenecke et al. [30] suggest that there is
broad public support for prioritizing fairness over efficiency in ad
delivery, indicating a societal shift towards valuing equity in online
advertising practices.

Despite the growing awareness of the discriminatory effects of
online advertising and a building consensus on the need to address
it, there is much less agreement on what an unbiased system would
look like, and how exactly it should be implemented. The settle-
ment between Meta and the U.S. Department of Justice establishes
a fair system as one that achieves statistical parity, such that the
distribution of gender, age, and race among the users who were
shown an ad (i.e., the actual audience), closely resembles the de-
mographic distribution of the users in the targeted audience, who
were active on the platform during the lifetime of that ad (i.e., the
eligible audience). However, while Meta has claimed it now adheres
to statistical parity, they do not provide enough information to the
external auditors to actually verify this [2, 24]. Furthermore, this
approach is only one of possible views of “fairness”, and others have
been proposed [8, 35, 49]. Importantly, if there are population-level
differences in interests, qualifications, or propensity to click on
advertising, enforcing multiple fairness definitions at the same time
may be mathematically impossible [29].

The lack of transparency surrounding online advertising plat-
forms makes selecting appropriate measures even more difficult.
Researchers have tried investigating user experiences through au-
tomated sock puppet accounts [17] as well as studying spillover
effects [31] and ad delivery optimization effects [3, 41] by running
ads themselves and leveraging the platforms’ reporting tools. Un-
fortunately, such approaches do not allow us to understand the
implications of alternative solutions. To this end, several previous
papers focused on modeling the core underlying mechanism of
online advertising: the real-time bidding auctions [11, 36]. The fair
machine learning literature’s proposed fairness criteria and their
implications are yet to be fully understood within the complex
domain of online programmatic advertising.

1.1 Our contributions
Conducting real-world studies to evaluate the impact of fairness-
enhancing interventions on online ad delivery system presents

significant challenges, as outside researchers cannot directly ex-
periment with the platforms’ advertising algorithms. While experi-
mental evaluations of unfairness in ad delivery systems are suited
to detect platform-specific problems, they are limited in scope. In
this work, we use simulations to observe general trends regarding
the utility for advertising platforms and their users under vari-
ous popularly proposed fairness approaches. Simulations are the
only method to measure counterfactual outcomes—such as whether
someone would have clicked on an ad had they seen it—and to
control and manipulate various factors, including platform utility,
user benefits associated with an ad impression, and group-level
differences in ad clicking probabilities. This approach enables us to
abstract away the effects of the ad content and advertiser account
properties (which is impossible in experiments that involve run-
ning particular ads on specific accounts) and to test a broad range
of reasonable parameter values and combinations. Our findings
demonstrate that discriminatory effects persist and are not merely
artifacts of how platforms manage specific ads or accounts.

In this paper, we conduct a simulation study to explore the impact
of enforcing different fairness notions in the context of high-stakes
online ad delivery. Our results are predicated on minimal assump-
tions that accurately reflect real-world advertising systems and
include a sensitivity analysis. Consequently, the following find-
ings are expected to hold generally for different online advertising
algorithms, even when abstracting away the auction process:

• The delivery of opportunity ads on online platforms
is inherently unfair. This is attributed to the platforms’
efficiency-driven operations aimed at maximizing their utility.

• Limiting the targeting options for advertisers does not
ensure equitable online advertising. Using personalized
ML-based predictions, the resulting ad impressions can still
be unfair for certain demographic groups.

• Enforcing fairness often reduces platform utility. Specif-
ically, we demonstrate that achieving predictive parity or
equality of opportunity generally incurs a lower utility cost
for platforms than achieving statistical parity.

• Tradeoffs exist between different notions of fairness. En-
forcing a specific fairness criterion can inadvertently worsen
outcomes concerning other criteria.

• Enforcing fairness can result in potentially undesirable
side-effects. For example, we find that “leveling down” sce-
narios occur in the presence of large spillover effects.

• Negative effects can be prevented. We show that it is cru-
cial to ensure that the platforms carry the cost of fairness
interventions instead of passing it on to end-users and adver-
tisers, in order to limit the undesirable side-effects.

Our research offers valuable implications for the regulation, moni-
toring, and compliance of ad delivery system (summarized in Ta-
ble 2). Additionally, our approach facilitates thoughtful consider-
ation and evaluation of alternative solutions when imposing new
fairness constraints, thereby helping ensure fair ad delivery and
overall equity on online platforms.

Code. To ensure the reproducibility of the experiments and re-
sults, we have made our code publicly available at https://github.
com/joebaumann/fair-online-ad-delivery.
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2 BACKGROUND AND RELATEDWORK
This paper draws on research in online ad auction design and
algorithmic fairness. Below we introduce the important aspects of
both of these streams of inquiry.

2.1 Ad auctions and auto-bidding
There is a complex ecosystem around matching available ads to
the individuals among the targeted audience who ultimately see
them. This matching process is backed by expansive data collection
that allows both for fine-grained segmentation of audiences and for
immediate feedback on each ad’s performance. Whenever a user
sees an ad on a website, they witness a result of an elaborate process
involving multiple parties. First, the publisher, i.e., the entity that
controls the ad space, announces to a supply-side platform (SSP)
that an ad slot is available to be shown to a user identified with a
cookie. The SSP may combine the cookie with all their other infor-
mation about that user (behaviors, demographics, etc.) and share it
with an ad exchange. The ad exchange hosts an ad auction where de-
mand side platforms (DSPs), acting on behalf of advertisers, choose
whether, and how much to bid for the opportunity to show their ad.
The DSP who places the winning bid gets to present their ad to the
user. The advertiser is charged per thousand impressions (cost per
mille, or CPM), or only whenever the user actually clicks on the ad
(cost per click, or CPC). In the latter scenario, the DSP is particularly
motivated to bid in auctions where they estimate the user will find
the ad relevant. The entire process happens programmatically, in
real-time, and appears seamless to the user.

More recently, major online platforms such as Meta or Google
have been taking over the roles of both SSPs and DPSs. Rather than
relying on showing ads on third-party webpages through SSPs,
these platforms can show ads within their own products. They also
hold the auctions themselves, eliminating the need for third-party
ad exchanges. Finally, they replaced much of what DSPs would
offer with auto-bidding. In the auto-bidding scenario, the adver-
tiser specifies the characteristics of their target audience and sets
the budget. The advertiser also selects their goal, e.g., maximiz-
ing impressions, clicks, or conversions. The platform then bids on
the advertiser’s behalf in an attempt to maximize their stated goal.
Of course, maximizing that goal is subject to the constraint of si-
multaneously optimizing the platform’s revenue; if the platform
overwhelms the user with ads, or shows ads that are upsetting, or
even uninteresting, the user might stop browsing, thus reducing
the number of future ad slots. Therefore, the platforms aim to show
users relevant ads. This motivation is enacted through an important
change to the auction system. Namely, the platform subsidizes bids
from ads predicted to be relevant to the user [33], i.e., the advertiser
actually pays less to show their ads to users who the platforms deem
well-matched. Conversely, ads predicted to have less relevance to
the particular user are less likely to win an auction even if they
have budgets comparable to those of relevant ads.

2.2 Fairness and discrimination in online ads
At first glance, the developments in auto-bidding appear to benefit
all stakeholders: they lower the knowledge barrier to entry for ad-
vertisers, who can now rely on the platform’s algorithms to optimize
the matching and bidding; at the same time, delivery optimization

promises a better user experience through ads that are more likely
to be of interest. Unfortunately, certain problems become appar-
ent when looking at the advertising platforms through the lens of
fairness. First, the advertiser may choose targeting criteria that are
discriminatory, e.g., by excluding individuals of particular gender
or age from seeing the ads. Additionally, there are two important
phenomena that can lead to apparently discriminatory or harmful
outcomes without the advertiser’s intent: competitive spillovers, and
optimization for relevance.

Discriminatory targeting. Until recently, advertisers on Meta
could choose to use gender, age, and “Ethnic affinity” for targeting
and excluding audiences from seeing opportunity advertising [5].
Following 2019 settlement between Meta and a number of civil
rights organizations [46] these criteria have been removed. De-
spite that, a malicious advertiser can still discriminate by targeting
interests whose distribution is skewed between genders or racial
groups [42] or by targeting a biased Custom Audience [41]. Impor-
tantly, in this work, we focus on situations where the advertiser
selected no discriminatory targeting options.

Competitive spillovers are rooted in the auction mechanism.
Imagine there are two advertisers, one targeting men and women,
the other targeting only women. Because of that targeting, they will
be competing in the ad auctions for women, thus raising the price
necessary to win the auction. As a consequence, if the advertiser
who targets men and women uses the same bids for both, they are
more likely to lose auctions for impressions to women, and end up
showing their ad predominantly to men, despite inclusive target-
ing [31]. One possible remedy to this problem is for the advertiser
to dynamically adjust the bid based on the gender of the user whose
ad slot is auctioned [36].

Optimization for relevance aims to maximize the utility both
for the advertisers and the users. The allocation predicted to be
optimal may, however, mean that the subsets of the audience that
are eventually shown the ad are skewed along the lines of gender,
race, age, or political inclination [30]. Ali et al. [3] have shown that,
despite inclusive targeting, the job ads they ran were shown to
skewed audiences depending on the advertised job: Meta showed
opportunities in the lumber industry predominantly to white men;
openings for taxi drivers and janitors went mostly to Black users;
offers for supermarket cashiers were presented disproportionately
to women. The effect is particularly troubling because it appears to
replicate stereotypes even if the qualifications (and lack thereof)
to perform the advertised job are evenly distributed among the
targeted audience [28]. Even though the source of algorithmic bias
is unrelated to the competitive spillovers, the proposed solutions
also rely on modifying the bidding strategy in a similar fashion [11,
12, 38]. However, in the auto-bidding scenario, it is the platform’s
responsibility rather than each individual advertiser’s.

2.3 Side-effects of enforcing fairness constraints
Many different notions of fairness exist in fair machine learning
literature, none of which is universally acceptable [35, 49]. Skewed
ad delivery corresponds to a violation of the fairness criterion called
statistical parity. Notice that statistical parity can be violated even
in the case of a perfectly accurate classifier (i.e., one that perfectly
predicts which users are interested in an ad), e.g., if the base rates
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(BR, the proportion of individuals interested in an ad, also called
prevalence) differ largely across groups. The issue of BR disparities
is frequently discussed as a reason for unfair outcomes in utility-
optimizing decision systems [13, 14, 29, 40].

Alternative notions of fairness, which are based on the actual
outcome (i.e., measuring clicks rather than impressions), have been
proposed [8, 49]. For example, predictive parity, also referred to as
PPV (positive predictive value) parity [10], is closely related to the
notion of calibration for the case of continuous-valued predicted
scores [6, 18]. In the context of serving online ads with binary out-
comes and decisions, a system satisfying predictive parity would
indicate that the click-through rates (CTR) are balanced between
groups. Proponents of this solution may claim it reflects the un-
derlying interests in the advertised content. Finally, equality of
opportunity (also referred to as TPR—true positive rate—parity)
requires an equal share of user groups to see the ads, among all
those who would click on the ad [25].

The choice of a particular fairness metric is crucial since it is
mathematically impossible to satisfy all parity metrics simultane-
ously (apart from degenerate cases) [13, 29]. Furthermore, Friedler
et al. [22] show that there is a trade-off between accuracy and fair-
ness,1 although this trade-off may be negligible in practice when
equality of opportunity is the metric of choice [39]. Finally, en-
forcing group fairness for ad impressions on online platforms may
lead to worse outcomes for all groups [26]. This “leveling down
objection” challenges the idea of egalitarianism [16, 37], which is
the basis for most group fairness criteria discussed in the fair ML
literature, as they typically aim to minimize inequality [34]. This
raises the question of whether we should demand equality even
if it does not benefit anyone, emphasizing that the group-specific
utility of fairness-enhancing techniques must be evaluated.

2.4 Legal responsibility
The U.S. Department of Justice found that demographic skews in
ad delivery constitute a violation of the Fair Housing Act and sued
Meta in the landmark case alleging algorithmic discrimination [47].
As part of the settlement, Meta pledged to address this problem us-
ing the Variance Reduction System (VRS) [44]. VRS is to be applied
to ads in protected categories (housing, employment, and credit)
and ensure statistical parity between the targeted and actual audi-
ence. Under this system, the demographic distribution (initially by
gender and race, later also by age) of the actual audience of each ad
in the protected category will be continuously monitored, and the
bidding strategy adapted. For example, if the fraction of men in the
actual audience is higher than in the eligible audience, the bidding
strategy will be modified in an attempt to slow down the delivery to
men and/or speed up the delivery to women. The system is designed
to not explicitly rely on demographic attributes when making the
bidding choices, but—if the system achieves its goal—the end effect
is not different than if these variables were used directly.

3 A SIMPLE ONLINE AD DELIVERY MODEL
In this section, we introduce a model to simulate the delivery of ads
on online platforms. We describe the overall setup and introduce

1In this context, the term accuracy is used to refer to any type of performance metric
such as the utility of the platform in the case of online ad delivery.

the used notation before presenting optimal ad delivery strategies
with and without fairness constraints.

3.1 Setup and notation
The auction mechanism used by online ad platforms is a complex
process involving many factors, such as bid price, ad quality, and
relevance. However, online platforms place bids on behalf of ad-
vertisers through auto-bidding in auctions whose mechanism they
design and control, and can thus decide which users see which ads.
Thus, we may abstract away the underlying auction mechanism
and model the platform’s ad delivery problem as a simple binary
decision problem from the perspective of a given high-stakes ad: for
all ad slots where the high-stakes ad is a competitor, the platform
must decide whether or not to show it. This allows us to investigate
the effect of introducing different fairness constraints to the ad
delivery system on different demographic groups.

The decision variable is denoted by 𝐷 , where 𝐷 = 1 indicates
showing the high-stakes ad and 𝐷 = 0 indicates showing another
ad. After being shown the ad, a user either clicks on it (𝑌 = 1) or
not (𝑌 = 0).2 The revenue for the given high-stakes ad is denoted
by 𝛼 , which is the utility gained if the user clicks on the ad, i.e., the
advertiser’s bid amount. The utility gained if the high-stakes ad
is not shown is denoted by 𝛽 , which could represent the expected
utility of the best other ad or the utility gained by not showing
any ad to the user. We assume that advertisers are willing to pay
for their ads to be shown, i.e., 𝛼 > 0 and 𝛽 > 0. This assumption
holds as long as there are other ads to show in a given slot, or if
there is non-paid content to be shown instead that would encourage
the user to stay on the platform and browse to the next ad slot.3
The platform may draw utility not just from showing an ad in a
particular ad slot, but also from the downstream effects of retaining
a user’s attention by showing them a non-paid piece of content.

Online ad platforms often refer to the (dis)utility that users expe-
rience when viewing an ad as the ad’s quality. Though, they do not
estimate ad quality on a user-specific basis, which is why it can be
modeled by simply adding constants to 𝛼 and 𝛽 [44]. We measure
what we call the user utility of a high-stakes ad as the number of
individuals that get to see the ad, which we denote by𝑉 (𝑑) = ∑

𝑑 .4
This allows us to evaluate the benefits and harms of a specific inter-
vention, which may be desirable from a societal perspective. This is
based on the assumption that, for those types of ads, users benefit
solely from seeing them, e.g., because it exposes them to some kind
of opportunity or resource. Furthermore, we assume that the online
platform accurately estimates the user’s probability of clicking on
the ad, which we denote by 𝑝 = 𝑃 [𝑌 = 1].5 Advertisement clicks
2It is worth noting that the model follows a CPC model, but the outcome 𝑌 represents
whether a user takes the advertiser’s desired action, which is why our model could
easily be generalized to other business objectives, representing any type of conversion.
3This formulation resembles a Vickrey-Clarke-Groves auction that includes organic
content [48].
4We consider high-stakes ads to be those for which seeing them is clearly desirable
(such as employment, housing, or financial opportunities) or undesirable (such as
predatory lending services) [19, 45]. Hence, the user utility could easily be defined as
a disutility if a high-stakes ad is harmful to see. For simplicity, we consider desirable
high-stakes ads that provide an opportunity in the remainder of this paper.
5In contrast to other online ad simulations (such as [23]), our proposed model is
implementation-agnostic: Our model is based on probabilities, while in reality, plat-
forms estimate this probability usingmachine learning (ML) models, leveraging various
user-specific data, such as online behavior, ad content, and temporal patterns and
interactions [44].
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follow a power-law distribution, and users’ overall click rates are
typically very low, usually less than 10% [1, 7]. We assume that
fairness constraints are imposed based on the sensitive attribute
𝐴, which is sometimes referred to as the protected attribute. For
simplicity, we consider fairness w.r.t. two groups, but our model
generalizes to non-binary sensitive attributes.

3.2 Optimal ad delivery strategies
Following a CPC model, the platform’s utility 𝑢 for applying a
decision rule 𝑑 to a single user is determined by whether the high-
stakes ad is displayed (𝑑 ∈ {0, 1}). If the ad is shown, the platform’s
utility can be calculated as the product of the probability of the user
clicking on the ad and the payment made by the advertiser in the
event of a click:

𝑢 (𝑑) =
{
𝛼 · 𝑝, for 𝑑 = 1
𝛽, for 𝑑 = 0.

(1)

We use the capital letter 𝑈 (𝑑) to denote the platform’s total util-
ity achieved for some decision rule 𝑑 . A rational decision maker
selects the decision rule that maximizes their expected utility:
arg max𝑑 𝐸 (𝑈 (𝑑)). The platform’s optimal unconstrained decision
rule 𝑑∗ takes the form of a uniform threshold rule:

𝑑∗ =

{
1, for 𝑝 >

𝛽
𝛼

0, otherwise.
(2)

This shows that the threshold increases with 𝛽 and decreases with
𝛼 , i.e., the expected utility of showing the high-stakes ad relative to
the alternative of not showing it determines the optimal decision
threshold.

3.3 Group fairness criteria
Here, we provide a basic overview of each fairness constraint con-
sidered in this work. For a detailed description of the fairness con-
straints, see Appendix A. We refer to Baumann et al. [9] for an
extensive overview of various sources of bias and their relation to
unfairness.

Statistical parity requires that the proportion of individuals
who receive a positive decision (𝐷 = 1, here: being shown the
high-stakes ad) is the same across different groups defined by a
sensitive attribute. Equality of opportunity, also known as TPR
(true positive rate) parity, requires that the TPR (here: the share
of people receiving a specific ad among all those that would click
on it) is equal across different groups. False positive rate (FPR)
parity is conceptually similar, but it measures on the proportion
of people shown the ad among all those that would not click on it.
Predictive parity, also known as PPV (positive predictive value)
parity, requires that the positive predictive value (here: the propor-
tion of individuals who click on the ad among those that are shown
the ad, i.e., the click-through-rate (CTR)) is equal across different
groups. False omission rate (FOR) parity is conceptually similar
to predictive parity, but it focuses on the proportion of people who
would click on the ad among all those that do not receive it.

3.4 Optimal ad delivery strategy under fairness
constraints

We formulate algorithmic fairness as a constrained optimization
problem, where an ad platform optimizes its utility while satisfy-
ing a predefined fairness constraint (FC) that represents a societal
fairness desideratum:

arg max
𝑑

𝐸 (𝑈 ) subject to 𝐹𝐶. (3)

If resources are limited, the total number of positive decisions (
∑
𝑑)

can form a second constraint to Eq. (3).
The form of optimal fairness-constrained decision rules (de-

noted by 𝑑∗𝑐 ) depends on which FC is enforced. Hardt et al. [25]
and Corbett-Davies et al. [15] show that optimal decision rules
satisfying statistical parity, equality of opportunity, or FPR parity
take the form of group-specific threshold rules:

𝑑∗𝑐 =

{
1, for 𝑝 ≥ 𝜏𝑎

0, otherwise,
(4)

where 𝜏𝑎 denotes group-specific constants. On the other hand, Bau-
mann et al. [10] showed that optimal decision rules satisfying pre-
dictive parity or FOR (false-omission rate) parity take the form of
group-specific upper- or lower-bound decision rules.

𝑑∗𝑐 =


1, for 𝑝 ≥ 𝜏𝑎

0, otherwise

}
for 𝑝 > 𝐵𝑅𝐴=𝑎

1, for 𝑝 ≤ 𝜏𝑎

0, otherwise

}
for 𝑝 < 𝐵𝑅𝐴=𝑎,

(5)

where 𝜏𝑎 denote different group-specific constants, 𝑝 denotes the
optimal PPV in the case of the predictive parity requirement (1
minus the optimal FOR when enforcing FOR parity, respectively),
and 𝐵𝑅𝐴=𝑎 denotes group 𝑎’s base rate (BR)—which is defined as the
ratio of individuals belonging to the positive class (𝑌 = 1) from a set
of individuals 𝑆𝑎 belonging to a group 𝐴 = 𝑎, also called prevalence:
𝐵𝑅𝐴=𝑎 = 𝑃 [𝑌 = 1|𝐴 = 𝑎] = 1

𝑛𝐴=𝑎

∑
𝑖∈𝑆𝑎

𝑝𝑖 .

4 EXPERIMENTS
4.1 Assumptions
For each scenario, we generate synthetic datasets for two groups
𝑎 ∈ 𝐴, (representing a binary sensitive attribute 𝐴, men (𝑚) and
women (𝑤 )) by sampling the active users’ click probabilities 𝑃𝑎
from a power-law distribution.6 That is, 𝑃𝑎 follows a power-law
distribution with a shape parameter 𝑘𝑎 : 𝑃𝑎 ∼ powerlaw(𝑘𝑎). We
assume that the platform’s utility for a user clicking on a high-stakes
ad (𝛼) is constant, i.e., it is the same for all individuals across all
groups𝐴. This resembles advertisers that are oblivious to the gender
of the platform users they target for high-stakes ad impressions.7 In
contrast, we model 𝛽𝑎 as a group-specific constant for individuals
of a group 𝐴 = 𝑎, which means that 𝛽𝑎 is assumed to be the same
for all individuals within a group 𝑎.

6The probability density function for the power-law is 𝑓 (𝑥, 𝑘 ) = 𝑘𝑥𝑘−1 . Usually, the
power-law shape parameter is denoted by 𝑎, but here we use the alternative notation
of 𝑘 to avoid confusion with the sensitive attribute.
7For simplicity, we do not consider competitive spillovers for the high-stakes ad in
question even though this may theoretically occur in practice.
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4.2 Scenarios
We now describe the four different scenarios that we simulate using
our proposed model. The clicking probability distribution of men
and the utility of not showing them the high-stakes ad is fixed for all
scenarios with 𝑘𝑚 = 0.05 (see Fig. 4 in Appendix B.1) and 𝛽𝑚 = 0.03.
This corresponds to an average clicking probability of around 4.8%
for men. On the other hand, the clicking probability distribution and
the non-clicking utility of women vary across scenarios, as does the
utility of clicking on a high-stakes ad. We use a grid of parameters
shown in Table 1 to simulate the four scenarios. For each scenario,
we sweep over different values of the parameters of interest and
simulate the scenario for each of those values. Each simulation
samples 1,000 men and 1,000 women and is repeated 30 times.

4.2.1 A: reference case (no gender differences). In this scenario,
we consider a reference case where there are no gender differences.
Both men and women have the same clicking probability distribu-
tion 𝑃 with 𝑘𝑚 = 𝑘𝑤 = 0.05, and the platform’s expected utility for
users not seeing the high-stakes ad is the same irrespective of their
group membership (𝛽𝑚 = 𝛽𝑤 = 0.03). We simulate this scenario for
ten different values of 𝛼 , ranging from 0.03 to 1.

4.2.2 B: competitive spillovers (𝛽𝑚 ≠ 𝛽𝑤 ). The clicking prob-
ability distribution for men and women remains the same as in
Scenario A (𝑘𝑚 = 𝑘𝑤 = 0.05). However, in this scenario, we fix
𝛼 = 0.2 and simulate ten different values of 𝛽𝑤 , ranging from 0.03
to 1. Recall that 𝛽 denotes the utility gained by the platform if the
high-stakes ad is not shown (𝐷 = 0), e.g., if the best alternative ad
is shown. For men, this is fixed at 𝛽𝑚 = 0.03, as in Scenario A. The
platform’s higher utility for women than for men if the high-stakes
ad is not shown (𝛽𝑤 < 𝛽𝑚) represents competitive spillovers [31].

4.2.3 C: base rate (BR) differences (𝑃𝑚 ≠ 𝑃𝑤 ). In this scenario,
we introduce BR differences between men and women, i.e., that
there are gender differences in the probability of clicking an ad.
The clicking probability distribution for men remains the same as
in Scenario A (𝑘𝑚 = 0.05), while we simulate ten different clicking
probability distributions for women using values ranging from 0.05
to 0.005 for the power-law distribution’s shape parameter 𝑘𝑤 . This
corresponds to an average clicking probability in the range between
0.5% (for 𝑘𝑤 = 0.005) and 4.8% (for 𝑘𝑤 = 0.05) compared to a fixed
probability of 4.8% for men, as visualized in Fig. 5 in Appendix B.1.
There are no group differences for the remaining parameters with
𝛼 = 1 and 𝑘𝑚 = 𝑘𝑤 = 0.03.

4.2.4 D: competitive spillovers & BR differences (𝑃𝑚 ≠ 𝑃𝑤
and 𝛽𝑚 ≠ 𝛽𝑤 ). In this scenario, we combine the competitive spillovers
and base rate (BR) differences between men and women from Sce-
narios B and C. We use the values 𝑘𝑚 = 0.05 and 𝑘𝑤 = 0.01 for
the click probability distribution for men and women. This means
that the women’s BR is lower, i.e., they are less likely to click on
the high-stakes ad on average (1% of women and 4.7% of men).
Similar to Scenario B, we then simulate different values ranging
from 0.01 to 0.1 for the platform’s expected individual utility when
they decide not to show the high-stakes ad to women.
For each scenario, we first simulate the optimal ad delivery strategy
from the perspective of the online ad platform. This represents the
situation of an ad platform that wants to maximize its total utility

Table 1: Grid of parameter used for the four different experi-
ment scenarios

Scenario 𝛼
men women

𝑘𝑚 𝛽𝑚 𝑘𝑤 𝛽𝑤

A 0.03–1

0.05 0.03
0.05 0.03

B 0.2 0.03–1
C 1 0.05–0.005 0.03
D 0.2 0.01 0.03–1

without considering any potential unfairness for the platform’s
users, resulting in the optimal unconstrained decision rule 𝑑∗ (see
Eq. (2)). In a second step, we add different FC to those ad delivery
strategies, resulting in 𝑑∗𝑐 , as described in Section 3.4. We compare
the outcomes resulting from applying these strategies for men
and women and measure fairness using the metrics introduced in
Section 2.2.

Without a fixed number of impressions, adding a FC may result
in the high-stakes ad being shown to fewer individuals, compared
to the unconstrained case. Thus, we additionally run each scenario
with the added constraint of

∑
𝑑∗ =

∑
𝑑∗𝑐 , requiring the number

of impressions to remain constant, irrespective of whether the
platform’s decision rule is constrained or not—the reasons for this
choice will be described in more detail in Section 5.3.

5 RESULTS
5.1 Enforcing fairness reduces platform utility
Fig. 1 visualizes the cost of fair ad delivery associated with enforc-
ing different FC. We investigate the sensitivity of those costs by
sweeping over different parameters, whose values are shown on
the x-axis—as described in Table 1. The y-axis shows the costs of
fairness for different FC. Those costs are presented in % of the utility
achieved in the unconstrained case, i.e., 𝑈 (𝑑∗

𝑐 )
𝑈 (𝑑∗ ) · 100, for any given

simulation setup. Thus, it is always 100% for the unconstrained case.
In scenario A, where there are no gender differences whatsoever,

fairness can be achieved at no cost. This is because there are no
group-specific differences to take into account. In scenario B, where
there are competitive spillovers, there is a cost in utility to ensure
fairness, even though the click probability distributions of men and
women are the same. However, since satisfying any type of fairness
also ensures all other types of fairness, the cost in terms of utility is
the same for any type of fairness. In contrast to the reference case
(scenario A), the presence of competitive spillovers leads to women
having a higher average utility gain from showing any other ad
(other than a high-stakes ad) than men. Therefore, a higher fraction
of men see the high-stakes ad compared to the fraction of women
seeing it—even absent any discriminatory ad targeting, i.e., even
if price bids are the same for users of both groups. Mitigating this
disparity requires counteracting the competitive spillovers to ensure
that the same fraction of men and women see the high-stakes ad.
Notice that fair ad delivery costs increase with a larger magnitude
of competitive spillovers (i.e., with larger differences between 𝛽𝑚
and 𝛽𝑤 ) but then slowly decrease again. This is due to the fact that
the optimal threshold, and thus also the optimal acceptance rate,

1423



Fairness in Online Ad Delivery FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

95

96

97

98

99

100

ut
ili

ty
 in

 %
 o

f
un

co
ns

tr
ai

ne
d 

ut
ili

ty

Scenario A Scenario B Scenario C Scenario D

0 .2 .4 .6 .8 1

95

96

97

98

99

100

ut
ili

ty
 in

 %
 o

f
un

co
ns

tr
ai

ne
d 

ut
ili

ty

Scenario A,
fixed impressions

Unconstrained

Statistical parity

Predictive parity

Equality of
opportunity

0 .2 .4 .6 .8 1
w

Scenario B,
fixed impressions

.01.02.03.04.05
kw

Scenario C,
fixed impressions

0 .2 .4 .6 .8 1
w

Scenario D,
fixed impressions

Figure 1: Average cost of different fairness criteria (in % of utility achieved absent any fairness constraint, i.e., 𝑈 (𝑑∗
𝑐 )

𝑈 (𝑑∗ ) · 100) for
the four scenarios: with (below) and without (above) a fixed impression constraint. Shaded intervals reflect 95% confidence
intervals from variation across repeated simulations.

is strictly tied to the group-specific utility gained by not showing
the high-stakes ad 𝛽𝑎 , all else equal. The acceptance rate of men
remains constant, whereas women’s acceptance rate decreases with
increasing values for 𝛽𝑤 . In contrast, under any FC, it is optimal to
decrease the acceptance rates for𝑚 and𝑤 with increasing values
for 𝛽𝑤 , and for 𝛽𝑤 ≥ 0.353 it is even optimal not to show the
high-stakes ad to anyone. This is visualized in detail in Fig. 7b

In scenario C, the click probability distributions differ between
the two groups, with women being less likely to click on the high-
stakes ad, on average, i.e., 𝑘𝑤 < 𝑘𝑚 . We find that the FC predictive
parity and equality of opportunity can be achieved at almost no
cost. For 𝑘𝑤 = 0.005, the utility decreases by just ∼ 0.01% when
enforcing predictive parity compared to the unconstrained case.
The biggest cost is observed for statistical parity, which measures
the disparity in the overall percentage of high-stakes ad delivery
across sensitive groups. For 𝑘𝑤 = 0.005 the platform loses 4% of
its utility, on average, when ensuring statistical parity compared
to the unconstrained case. This represents a 400-fold increase in
costs compared to the fairness criteria equality of opportunity and
predictive parity (i.e., equal CTRs). Although the 4% reduction may
appear to be small, it is important to consider that this decrease
corresponds to the revenue generated from all ad auctionswhere the
high-stakes ad was a contender. As a result, the costs of achieving
fairness could be substantial for an industry that generates nearly
$100 billion in revenue annually [27].

The results for Scenario D, which combines BR differences and
competitive spillovers, are similar to those of Scenarios B and C. For
𝛽𝑤 = 0.03, there are no competitive spillovers, resulting in higher
costs for FPR parity and especially for statistical parity. Just as in
Scenario B, for small competitive spillovers, the costs increase, but
for very large competitive spillovers, they decrease since the fair

dissemination of the high-stakes ads becomes less and less lucrative
relative to the high utility that can be gained by not showing the
high-stakes ad (𝐷 = 0).

The results presented in this section are sensitive to the platform
user groups’ BRs. For very low BRs, adjusting decision thresholds
for the high-stakes ad is cheap as there a very few users that would
click on the high-stakes ad anyway. However, for larger BRs and BR
differences between groups, ensuring fairness is much more costly.
We provide the results for a batch of simulations using parameters
𝑘𝑎 that represent this case in Appendix B.2.

5.2 Tradeoffs between fairness criteria: enforcing
one constraint conflicts with others

By definition, all fairness criteria are met in scenario A since there
are no group-specific differences, as demonstrated in Fig. 2a. In cases
where there is no difference in the click probability distributions
between the two groups, satisfying any type of fairness ensures all
other types of fairness at no additional cost. I.e., the different FC
can be achieved at the same time since the BR does not differ across
groups. Thus, for scenario B, enforcing any type of fairness through
post-processing produces fairness with respect to all metrics.

For scenario C, in addition to the fairness-utility tradeoff, there
are tradeoffs between different notions of fairness due to the dif-
ference in BRs, as shown in Fig. 2b. The optimal post-processing
techniques provided by [10, 15, 25] work effectively, but depending
on the specific constraint that is enforced, the side-effects in terms
of other notions of fairness differ. This is in line with the theoretical
fairness impossibility results [13, 29]. Enforcing statistical parity
comes at a huge cost in predictive parity, as can be seen in Fig. 2b.
In the unconstrained case, PPVs are similar for men and women due
to the similar shape of the tail of the click probability distribution
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Figure 2: Between fairness tradeoffs when enforcing different fairness criteria. Positive values represent higher rates for men
than for women; e.g., the PPV difference is calculated by subtracting the women’s PPV from the men’s PPV. The legend in (d)
applies to all panels. Shaded intervals reflect 95% confidence intervals from variation across repeated simulations.

(as visible with the almost identical blue lines in the top left panel of
Fig. 7c). As this is not the case for acceptance rates and TPR, a larger
deviation from the unconstrained optimum (i.e., a larger change in
the group-specific threshold away from the single uniform thresh-
old) is necessary to ensure statistical parity —as visible with the
diverging blue lines in the top right and bottom right panels of
Fig. 7c. This is the reason why it is not only more costly (in terms
of platform utility) to ensure those metrics (as explained in detail
in Section 5.1) but also in conflict with predictive parity. Another

side-effect of ensuring statistical parity is that the resulting TPR
of women (as well as their FPR) is slightly higher than the one of
men. For this same reason, ensuring predictive parity or equality
of opportunity is not only cheap but also has a marginal effect on
other fairness notions (as can be seen with the almost identical plots
in Fig. 2b). The results of scenario D are conceptually similar to
those of scenarios B and C, as there are both competitive spillovers
and BR differences across groups.
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5.3 Enforcing fairness leads to “leveling down”
in the presence of competitive spillovers

Scenarios B and D both suffer from “leveling down”: Introduc-
ing a FC requires the platform to deviate from its optimal un-
constrained decision rule in order to achieve equality w.r.t. a cer-
tain parity metric. “Leveling down” is defined as the situation in
which enforcing fairness harms some group without benefiting
any group [16, 34, 37], i.e., if the values are smaller than or equal
to zero in Fig. 3. For large competitive spillovers (simulated with
increasing values for 𝛽𝑤 to increase the difference between 𝛽𝑚
and 𝛽𝑤 ), the optimal fair solution for the platform is to reduce the
number of high-stakes ad impressions for men without changing
the number of high-stakes ad impressions for women, compared
to the unconstrained case. This leads to a decrease in utility for
users of the platform. Specifically, men experience a decrease in
utility while women’s utility remains unchanged. This is visualized
in the light blue and light orange lines in Fig. 3, where the y-axis
represents the difference between the utility in the unconstrained
vs. in the fairness-constrained, i.e., 𝑉 (𝑑∗𝑐 ) −𝑉 (𝑑∗). The rationale
for the “leveling down” effect is the fact that with large competi-
tive spillovers, achieving equality by harming the better-off group
becomes optimal from the platform’s perspective, resulting in a
situation where no one benefits from the added FC.

To avoid “leveling down”, we reran all the simulations described
in Section 4.2 with an additional constraint of a fixed total number
of high-stakes ad impressions for the fairness-constraint simula-
tions, depending on the number of users who would get to see the
high-stakes ad in the unconstrained case:

∑
𝑑∗ =

∑
𝑑∗𝑐 . As can be

seen in Fig. 3, this prevents the platform from achieving equality
by harming the better-off group and ensures that the burden of the
added FC is on the platform. By maintaining a constant number
of high-stakes ad impressions, we can ensure that the added FC
benefits at least one of the groups. In this case, ensuring fairness
while keeping the total number of impressions constant increases
the user utility for women and decreases the utility for men. How-
ever, preventing the platform from reducing the total number of
high-stakes ad impressions comes at a cost in terms of platform
utility, shifting the cost of fairness from the users to the platform.
This new cost in terms of platform utility is shown in Fig. 1 (be-
low), showing that adding an impression constraint shifts the cost
of fairness from the users to the platform. Consequently, it leads
to an increase in the cost of fairness in terms of the platform’s
utility, relative to the utility derived in the unconstrained case, for
scenarios B, C, and D. However, the increase is more pronounced
for the scenarios including competitive spillovers, i.e., scenarios B
and D.8 This observation highlights the tradeoff between utility-
maximizing platforms that simply aim to meet an egalitarian notion
of fairness and society, which aims to ensure fairness in a way that
is beneficial for historically disadvantaged user groups.

8Notice that the added impression constraint yields a monotonically increasing cost
of fairness with increasing competitive spillovers. This occurs because the platform
cannot just show fewer ads to all users in order to to achieve a given fairness objective,
which would be the optimal strategy in the case of large competitive spillovers without
the additional impression constraint, as shown in Fig. 7b and 7d.
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Figure 3: “Leveling down” user utility when enforcing fair-
ness in the presence of large competitive spillovers. Without
impression constraints (transparent lines) men’s utility is
decreased while women’s utility is unchanged. Forcing the
platform to retain the same number of impressions as with-
out a fairness intervention (opaque lines) ensures that no
leveling down occurs.

6 DISCUSSION
Algorithmic advertisement (ad) delivery systems determine which
ads users see, forming the backbone of a multibillion-dollar industry
that powers major tech platforms such as Meta, Google, Bing, and
X. These platforms use vast amounts of collected user data to steer
ads towards strategically selected sub-groups among the targeted
audiences. They have recently faced criticism for their ad systems’
emphasis on utility-maximization, which can lead to unfair access
to opportunity for historically disadvantaged communities.

In this work, we investigated the downstream effects of intro-
ducing a variety of fairness interventions in an attempt to remedy
discriminatory ad delivery effects, such as entrenching housing
segregation or gender differences in access to certain career paths.
The results of our simulated experiments show that applying the
optimal unconstrained decision rule (maximizing the platform util-
ity) does not fully satisfy any definition of fairness. Instead, fair-
ness constraints must be explicitly enforced to ensure any given
notion of fairness. This can be achieved using post-processing ap-
proaches [10, 15, 25].

Several tradeoffs emerge when enforcing fairness constraints.
First, there exists a tradeoff between the ad platform’s utility and
fairness for the users. The cost of fairness in terms of the online
platform’s utility depends on the type of fairness considered. We
find that platform’s costs of ensuring statistical parity are signif-
icantly higher than other criteria. On the other hand, our results
show that this tradeoff is negligible when equality of opportunity
is the only criterion considered. These findings also highlight the
‘impossibility of fairness’ effect, which means there is a tradeoff
between different notions of fairness [13, 29]. This means that en-
forcing a fairness notion may have positive effects on some other
fairness notions, but negative effects on others. For example, ensur-
ing statistical parity results in a violation of predictive parity if the
clicking probability distributions differ across groups.
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Table 2: Summary of the key insights and policy recommendations to improve the fairness of algorithmic ad delivery systems.

Key insights: Policy recommendations:

Efficiency-driven online ad systems inherently exhibit un-
fairness, even with restricted targeting options. →

As harmful effects may stem from the process of optimizing ad delivery,
regulation must go beyond limiting the use of sensitive information
for ad targeting. Independent audits of ad delivery systems should be
mandated.

Prioritizing fairness can lead to unintended consequences,
such as a leveling down effect (achieving fairness by harm-
ing the privileged group without uplifting others).

→

As side-effects of fairness-enhancing interventions can be undesirable
from a societal perspective, any audits introduced as part of settlements
or regulation (like the DMA, the DSA, or the AI Act in the European
Union) must also monitor (1) by what means exactly fairness is achieved
and (2) whether platforms are passing the cost onto the end-users.

Inherent differences among targeted user groups often pre-
clude satisfying multiple fairness metrics simultaneously. → The selection of a fairness metrics determines who benefits from the

intervention. Thus, the choice of a metric requires substantial evaluation.

Our findings also contribute to the debate on the “leveling down”
objection, which challenges the idea of egalitarianism and suggests
that enforcing group fairness for ad impressions on online plat-
forms may lead to worse outcomes for all groups [16, 26, 34, 37].
We demonstrate that enforcing fairness in the presence of large com-
petitive spillovers can lead to the leveling down effect, as achieving
equality by harming the better-off group becomes optimal from
the platform’s perspective. We show that this scenario can be pre-
vented if the platform enforces a fixed number of high-stakes ad
impressions in both unconstrained and constrained scenarios. As
a result, the cost of the fairness intervention would be carried by
the platform, rather than by its users. While our results imply that
the costs of fairness can be shifted from the users to the platform,
in practice, platforms could still pass them on to the advertisers,
unless specifically prevented from doing so by regulation. There-
fore, any proposed policy should consider the downstream effects
of enforcing any fairness criteria on the cost, and availability of
high-stakes advertising.

Taken together, our findings are crucial in light of the current
discussion of what a fair ad delivery system should look like, which
fairness criteria are defensible and what downstream effects they
would lead to, as well as who should carry the burden of introduc-
ing the constraints.

Policy recommendations. Significant regulatory responses have
been initiated in the US (in the form of the Department of Justice’s
lawsuit against Meta [47]) and Europe (in the form of the Digital
Services Act, the Digital Markets Act, and the recently approved
Artificial Intelligence Act). However, our findings indicate that ex-
isting measures may not suffice. Effective external monitoring is
essential to ensure fair ad delivery, and potential side-effects must
be carefully considered and addressed. Table 2 details specific policy
recommendations derived from our insights.

Limitations. Our results suffer from several limitations: While
abstracting away the auction mechanism allows us to investigate
the effects of enforcing fairness of online ad delivery in isolation, in
practice, the exact implementation of the auction mechanism might
have an effect on the platform’s room for maneuver. Further, in our

simulation, we do not model within-group differences in impres-
sion costs; in practice, the actual utility costs of enforcing fairness
might be lower. In addition, more research is needed to investigate
the long-term effects of enforcing fairness on the online ad market
and whether advertisers can game the system if they know of the
platform’s fairness adjustments in their implementation.

7 CONCLUSION
Unfair delivery of high-stakes ads online has significant societal
effects. It can perpetuate and exacerbate existing inequalities and
discrimination by reinforcing stereotypes and biases that have far-
reaching consequences for individuals and society as a whole. In
this paper, we focus on the goal of ensuring equitable access to
relevant information that is shared through online advertisement
(such as housing or job opportunities). In conclusion, our study
highlights the need for explicit enforcement of fairness in online ad
delivery systems. Fairness is not satisfied by default, and simply re-
stricting advertisers’ targeting options does not ensure fairness. Our
study indicates that while ensuring fairness in online ad systems
reduces platform utility, achieving predictive parity or equality of
opportunity generally incurs a lower utility cost than achieving
statistical parity. Our findings reveal tradeoffs between different
notions of fairness; for example, enforcing statistical parity leads
to larger disparities in CTRs between groups. Moreover, pursuing
fairness can result in potentially undesirable side-effects, such as
“leveling down” effects that occur in the presence of competitive
spillovers, which must be actively mitigated. As online program-
matic advertising continues to evolve, our findings are important
for ensuring fairness of ad impressions for historically marginalized
groups on online platforms.
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Figure 4: Click probability distributions 𝑃𝑎 (log scale)

A GROUP FAIRNESS CRITERIA
Table 3 lists the mathematical constraints associated with the fair-
ness criteria we consider in this paper. Additionally, it provides
a reference for the optimal post-processing unfairness mitigation
solutions that exist for each of those criteria.

Statistical parity requires that the proportion of individuals who
receive a positive decision (𝐷 = 1) is the same across different
groups defined by a sensitive attribute 𝐴 (e.g., race or gender). In
the context of online ad delivery, this means that the proportion
of individuals who are shown an ad should be the same across
different groups defined by 𝐴.

Equality of opportunity, also known as TPR parity, requires that
the true positive rate (TPR) is equal across different groups. The
TPR is the proportion of individuals who are correctly identified
as belonging to the positive class (𝐷 = 1) out of all individuals
who actually belong to the positive class (𝑌 = 1). In the context
of online ad delivery, the TPR refers to the share of people seeing
a specific ad (𝐷 = 1) among all those that would click on the ad
(𝑌 = 1). False positive rate (FPR) parity is conceptually similar to
equality of opportunity, but it focuses on the proportion of people
seeing the ad among all those that would not click on it (i.e., that
belong to the negative class 𝑌 = 0).

Predictive parity, also known as PPV parity, requires that the
positive predictive value (PPV) is the same across different groups𝐴.
The PPV is the proportion of individuals who actually belong to the
positive class (𝑌 = 1) out of all individuals who are identified as such
(𝐷 = 1). In the context of online ad delivery, the PPV corresponds
to the proportion of individuals clicking on an ad (𝑌 = 1) among all
those that got to see it (𝐷 = 1). Hence, enforcing predictive parity is
equivalent to equalizing click-through rates (CTR). False omission
rate (FOR) parity is conceptually similar to predictive parity, but
it focuses on the proportion of people who would click on the ad
(𝑌 = 1) among all those that do not see it (𝐷 = 0).

B ADDITIONAL EXPERIMENTAL RESULTS
B.1 Additional experimental details
Fig. 4 shows the click probability distributions 𝑃𝑎 (following a
power-law distribution) on a log scale for different values of 𝑘𝑎 for
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Figure 5: Scenario C: average probabilities of clicking on ad
for men (𝑚) and women (𝑤 )

𝑎 ∈ {𝑚,𝑤}. The plot shows that decreasing the value of the shape
parameter 𝑘𝑎 leads to a more right-skewed distribution with a long
tail on the right side, indicating users’ low clicking probabilities.

Fig. 5 visualizes the average probabilities of clicking on an ad for
men (𝑚) and women (𝑤 ) associated with a given value for 𝑘𝑎 on
the x-axis (as by the range of values simulated in scenario C).

Fig. 7 visualizes group-specific metrics when enforcing different
fairness criteria for all four scenarios. This figure is similar to Fig. 2,
but instead of visualizing differences, it shows the specific values for
men and women. For example, instead of visualizing the difference
between the acceptance rates of men and women, it visualizes the
acceptance rates of men and women separately. As in Fig. 2, the
x-axis represents the values of a certain scenario-specific parameter
we sweep over to investigate the sensitivity (see Table 1).

B.2 Larger BR differences between men and
women increase the cost of fairness

We run a second batch of simulations, using the same scenarios as
in Section 4.2 but with bigger base rate (BR) differences between
men (𝑚) and women (𝑤 ). Table 4 list the parameters used for these
scenarios, which we denote by A2, B2, C2, and D2. Notice that those
simulations only differ in their shape parameters for the clicking
distribution. In particular, we use a larger shape parameter 𝑘𝑚 ,
which represents a larger average probability of clicking on the
high-stakes ad for men (∼ 28%), and a different range of simulated
𝑘𝑤 for the scenario C2. All other parameters are equivalent to the
corresponding scenarios A, B, C, and D—see Table 1.

Fig. 6 shows the cost of different fairness criteria (in % of total
utility) for the four scenarios A2, B2, C2, and D2. As can be seen
on the y axis, the effect size increases compared to the scenarios
A, B, C, and D, where men’s average clicking probability for the
high-stakes ad is lower. If men are, on average, more likely to click
on the high-stakes ad, men are more likely to see this high-stakes ad
(e.g., since advertisers are willing to pay more for their high-stakes
ad to be shown to men). The increased cost of fairness is a direct
consequence of this increased BR differences between men and
women, as this means that enforcing some FC results in changing
the high-stakes ad impression decision for more platform users.
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Table 3: Group fairness criteria

Fairness criterion Mathematical constraint Post-processing unfairness mitigation

Statistical parity 𝑃 (𝐷 =1 |𝐴=0)=𝑃 (𝐷 =1 |𝐴=1) Corbett-Davies et al. [15]
Equality of opportunity 𝑃 (𝐷 =1 |𝑌 =1, 𝐴=0)=𝑃 (𝐷 =1 |𝑌 =1, 𝐴=1) Corbett-Davies et al. [15], Hardt et al. [25]
FPR parity 𝑃 (𝐷 =1 |𝑌 =0, 𝐴=0)=𝑃 (𝐷 =1 |𝑌 =0, 𝐴=1) Hardt et al. [25]
Predictive parity 𝑃 (𝑌 =1 |𝐷 =1, 𝐴=0)=𝑃 (𝑌 =1 |𝐷 =1, 𝐴=1) Baumann et al. [10]
FOR parity 𝑃 (𝑌 =1 |𝐷 =0, 𝐴=0)=𝑃 (𝑌 =1 |𝐷 =0, 𝐴=1) Baumann et al. [10]

Table 4: Parameter grid for scenarios A2, B2, C2, and D2.

Scenario 𝛼
men women

𝑘𝑚 𝛽𝑚 𝑘𝑤 𝛽𝑤

A2: Reference case 0.03–1

0.4 0.03
0.4 0.03

B2: competitive spillovers 0.2 0.03–1
C2: base rate (BR) differences 1 0.4–0.01 0.03
D2: competitive spillovers & BR differences 0.2 0.01 0.03–1
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Figure 6: Average cost of different fairness criteria (in % of utility achieved absent any fairness constraint, i.e., 𝑈 (𝑑∗
𝑐 )

𝑈 (𝑑∗ ) · 100) for the
four scenarios A2, B2, C2, and D2. Shaded intervals reflect 95% confidence intervals from variation across repeated simulations.
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